Aizhong Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919808/publications.pdf

Version: 2024-02-01

		126901	1	38468
75	3,723	33		58
papers	citations	h-index		g-index
88	88	88		3976
00	00	00		3770
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. Journal of Hydrology, 2022, 605, 127301.	5.4	34
2	Improving global gross primary productivity estimation by fusing multi-source data products. Heliyon, 2022, 8, e09153.	3.2	5
3	Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. Journal of Hydrology: Regional Studies, 2022, 41, 101064.	2.4	26
4	QRF4Pâ€NRT: Probabilistic Postâ€Processing of Nearâ€Realâ€Time Satellite Precipitation Estimates Using Quantile Regression Forests. Water Resources Research, 2022, 58, .	4.2	6
5	Evaluation and Statistical Postâ€Processing of Two Precipitation Reforecast Products During Summer in the Mainland of China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
6	Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GIScience and Remote Sensing, 2021, 58, 235-260.	5.9	34
7	Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling. Remote Sensing, 2021, 13, 3061.	4.0	9
8	Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China. Journal of Chinese Geography, 2021, 31, 1102-1122.	3.9	8
9	Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Science of the Total Environment, 2021, 783, 146965.	8.0	37
10	Highâ€Resolution Land Surface Modeling of the Effect of Longâ€Term Urbanization on Hydrothermal Changes Over Beijing Metropolitan Area. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034787.	3.3	7
11	New Insights Into Error Decomposition for Precipitation Products. Geophysical Research Letters, 2021, 48, e2021GL094092.	4.0	14
12	InterComparison and Evaluation of MultiSource Soil Moisture Products in China. Earth and Space Science, 2021, 8, e2021EA001845.	2.6	14
13	Machine learning for precipitation forecasts post-processing $\hat{a}\in$ " Multi-model comparison and experimental investigation. Journal of Hydrometeorology, 2021, , .	1.9	8
14	Developing the Coupled CWRFâ€FVCOM Modeling System to Understand and Predict Atmosphereâ€Watershed Interactions Over the Great Lakes Region. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002319.	3.8	17
15	Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China. International Journal of Remote Sensing, 2020, 41, 4238-4268.	2.9	34
16	Assessment and Reduction of the Physical Parameterization Uncertainty for Noahâ€MP Land Surface Model. Water Resources Research, 2019, 55, 5518-5538.	4.2	31
17	Drought Characteristics and Propagation in the Semiarid Heihe River Basin in Northwestern China. Journal of Hydrometeorology, 2019, 20, 59-77.	1.9	58
18	An improved meta-Gaussian distribution model for post-processing of precipitation forecasts by censored maximum likelihood estimation. Journal of Hydrology, 2019, 574, 801-810.	5.4	24

#	Article	IF	CITATIONS
19	Factors Influencing the Performance of Regression-Based Statistical Postprocessing Models for Short-Term Precipitation Forecasts. Weather and Forecasting, 2019, 34, 2067-2084.	1.4	5
20	Non-invasive estimation of root zone soil moisture from coarse root reflections in ground-penetrating radar images. Plant and Soil, 2019, 436, 623-639.	3.7	26
21	Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China. Climate Dynamics, 2019, 53, 7447-7460.	3.8	16
22	2015–16 floods and droughts in China, and its response to the strong El Niño. Science of the Total Environment, 2018, 627, 1473-1484.	8.0	52
23	An estimate of human and natural contributions to changes in water resources in the upper reaches of the Minjiang River. Science of the Total Environment, 2018, 635, 901-912.	8.0	27
24	Dynamic Manning's roughness coefficients for hydrological modelling in basins. Hydrology Research, 2018, 49, 1379-1395.	2.7	19
25	Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area. Climate Dynamics, 2018, 50, 1927-1948.	3.8	17
26	Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China. Hydrology and Earth System Sciences, 2018, 22, 5697-5709.	4.9	13
27	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2806-2828.	3.8	43
28	A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 2018, 564, 697-711.	5.4	28
29	Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: A case study in the Yalong River basin. Journal of Hydrology, 2017, 547, 196-207.	5.4	34
30	Improvement of rank histograms for verifying the reliability of extreme event ensemble forecasts. Environmental Modelling and Software, 2017, 92, 152-162.	4.5	4
31	Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model. Science China Earth Sciences, 2017, 60, 876-898.	5.2	13
32	A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1246.	6.5	121
33	Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,077.	3.3	45
34	An experimental seasonal hydrological forecasting system over the Yellow River basin – PartÂ1: Understanding the role of initial hydrological conditions. Hydrology and Earth System Sciences, 2016, 20, 2437-2451.	4.9	49
35	Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration. Hydrology and Earth System Sciences, 2016, 20, 529-553.	4.9	42
36	Tree Root Automatic Recognition in Ground Penetrating Radar Profiles Based on Randomized Hough Transform. Remote Sensing, 2016, 8, 430.	4.0	56

#	Article	IF	CITATIONS
37	Evaluating the skill of NMME seasonal precipitation ensemble predictions for 17 hydroclimatic regions in continental China. International Journal of Climatology, 2016, 36, 132-144.	3.5	56
38	An evaluation of parametric sensitivities of different meteorological variables simulated by the <scp>WRF</scp> model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2925-2934.	2.7	24
39	Multiobjective adaptive surrogate modelingâ€based optimization for parameter estimation of large, complex geophysical models. Water Resources Research, 2016, 52, 1984-2008.	4.2	63
40	High-resolution simulation of the spatial pattern of water use in continental China. Hydrological Sciences Journal, 2016, 61, 2626-2638.	2.6	7
41	Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area. Geophysical Research Letters, 2015, 42, 579-587.	4.0	58
42	Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surfaceâ€Subsurface Process (CSSP) land surface model. Journal of Advances in Modeling Earth Systems, 2015, 7, 648-669.	3.8	26
43	Seasonal drought predictability and forecast skill over China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8264-8275.	3.3	53
44	Post-processing of ensemble forecasts in low-flow period. Hydrological Processes, 2015, 29, 2438-2453.	2.6	17
45	Multi-objective parameter optimization of common land model using adaptive surrogate modeling. Hydrology and Earth System Sciences, 2015, 19, 2409-2425.	4.9	60
46	Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. Journal of Hydrology, 2015, 520, 157-167.	5.4	231
47	Calibrating the impact of root orientation on root quantification using ground-penetrating radar. Plant and Soil, 2015, 395, 289-305.	3.7	31
48	Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. Journal of Hydrology, 2015, 528, 537-549.	5.4	57
49	The hydro-environmental response on the lower Yellow River to the water–sediment regulation scheme. Ecological Engineering, 2015, 79, 69-79.	3.6	51
50	A Combination of TsHARP and Thin Plate Spline Interpolation for Spatial Sharpening of Thermal Imagery. Remote Sensing, 2014, 6, 2845-2863.	4.0	57
51	Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 2014, 9, 055007.	5.2	167
52	Would the â€~real' observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environmental Research Letters, 2014, 9, 015001.	5.2	63
53	Evaluating Skill of Seasonal Precipitation and Temperature Predictions of NCEP CFSv2 Forecasts over 17 Hydroclimatic Regions in China. Journal of Hydrometeorology, 2014, 15, 1546-1559.	1.9	34
54	The impact of the South–North Water Transfer Project (CTP)'s central route on groundwater table in the Hai River basin, North China. Hydrological Processes, 2014, 28, 5755-5768.	2.6	32

#	Article	IF	Citations
55	An evaluation of post-processed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. Journal of Hydrology, 2014, 519, 2890-2905.	5.4	50
56	A simple error estimation method for linear-regression-based thermal sharpening techniques with the consideration of scale difference. Geo-Spatial Information Science, 2014, 17, 54-59.	5.3	10
57	An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environmental Modelling and Software, 2014, 60, 167-179.	4.5	180
58	Comment on: "root orientation can affect detection accuracy of ground-penetrating radar― Plant and Soil, 2014, 380, 441-444.	3.7	9
59	Hydrologic post-processing of MOPEX streamflow simulations. Journal of Hydrology, 2014, 508, 147-156.	5.4	47
60	Variations in global temperature and precipitation for the period of 1948 to 2010. Environmental Monitoring and Assessment, 2014, 186, 5663-5679.	2.7	29
61	An estimate of human and natural contributions to flood changes of the Huai River. Global and Planetary Change, 2014, 119, 39-50.	3.5	24
62	A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environmental Modelling and Software, 2014, 51, 269-285.	4.5	242
63	Inclusion of soil carbon lateral movement alters terrestrial carbon budget in China. Scientific Reports, 2014, 4, 7247.	3.3	32
64	Improving kinematic wave routing scheme in Community Land Model. Hydrology Research, 2013, 44, 886-903.	2.7	15
65	A Conjunctive Surface–Subsurface Flow Representation for Mesoscale Land Surface Models. Journal of Hydrometeorology, 2013, 14, 1421-1442.	1.9	38
66	A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 2013, 5, 212-224.	3.8	375
67	Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrology and Earth System Sciences, 2013, 17, 3279-3293.	4.9	69
68	Regional Climate–Weather Research and Forecasting Model. Bulletin of the American Meteorological Society, 2012, 93, 1363-1387.	3.3	129
69	Using Land Use Data to Estimate the Population Distribution of China in 2000. GIScience and Remote Sensing, 2012, 49, 822-853.	5.9	13
70	A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 2012, 171-172, 85-91.	5.1	140
71	Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales. Journal of Hydrometeorology, 2011, 12, 579-599.	1.9	43
72	Improved Terrestrial Hydrologic Representation in Mesoscale Land Surface Models. Journal of Hydrometeorology, 2010, 11, 797-809.	1.9	54

AIZHONG YE

#	Article	IF	CITATIONS
73	Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resources Research, 2007, 43, .	4.2	52
74	Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China Series D: Earth Sciences, 2005, 48, 713-723.	0.9	89
75	Regional climate modeling to understand Tibetan heating remote impacts on East China precipitation. Climate Dynamics, 0 , 1 .	3.8	3