Junlong Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919656/publications.pdf

Version: 2024-02-01

304743 265206 1,901 57 22 42 h-index citations g-index papers 62 62 62 2217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. International Journal of Biological Macromolecules, 2022, 195, 274-286.	7.5	20
2	Rapid dissolution of cellulose in an AlCl ₃ /ZnCl ₂ aqueous system at room temperature and its versatile adaptability in functional materials. Green Chemistry, 2022, 24, 885-897.	9.0	54
3	Highly-efficient nitrogen self-doped biochar for versatile dyes' removal prepared from soybean cake via a simple dual-templating approach and associated thermodynamics. Journal of Cleaner Production, 2022, 332, 130069.	9.3	32
4	Polystyrene sulfonate is effective for enhancing biomass enzymatic saccharification under green liquor pretreatment in bioenergy poplar. , $2022,15,10.$		7
5	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & 2022, 14, 16809-16819.	8.0	5
6	Hierarchically porous tobacco midrib-based biochar prepared by a simple dual-templating approach for highly efficient Rhodamine B removal. Arabian Journal of Chemistry, 2022, 15, 103904.	4.9	4
7	Mapping of \hat{l}^2 -lactoglobulin \hat{a}^* mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocolloids, 2022, 129, 107640.	10.7	2
8	Exploring the promoting mechanisms of bovine serum albumin, lignosulfonate, and polyethylene glycol for lignocellulose saccharification from perspective of molecular interactions with cellulase. Arabian Journal of Chemistry, 2022, 15, 103910.	4.9	8
9	Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers, 2022, 14, 1806.	4.5	9
10	Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils. Carbohydrate Polymers, 2021, 251, 116725.	10.2	23
11	Impact of degree of substitution of cationic xylan on strength of cellulose fiber networks along with medium conductivity. Industrial Crops and Products, 2021, 159, 113058.	5.2	9
12	Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydrate Polymers, 2021, 253, 117188.	10.2	35
13	Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions. Carbohydrate Polymers, 2021, 253, 117223.	10.2	48
14	In-situ and real-time probing cellulase biosensor formation and its interaction with lignosulfonate in varied media. Sensors and Actuators B: Chemical, 2021, 329, 129114.	7.8	9
15	Understanding the promoting effect of non-catalytic protein on enzymatic hydrolysis efficiency of lignocelluloses. Bioresources and Bioprocessing, 2021, 8, .	4.2	26
16	Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers, 2021, 255, 117431.	10.2	46
17	Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules, 2021, 22, 1654-1663.	5.4	94
18	Growth factor functionalized biodegradable nanocellulose scaffolds for potential wound healing application. Cellulose, 2021, 28, 5643.	4.9	13

#	Article	IF	Citations
19	Impacts of degree of substitution of quaternary cellulose on the strength improvement of fiber networks. International Journal of Biological Macromolecules, 2021, 181, 41-44.	7.5	10
20	Evaluating the refractive index, thickness and porosity of ultrathin cellulose nanocrystal films with different polymorphs by SPR technique. International Journal of Biological Macromolecules, 2021, 193, 1209-1214.	7.5	5
21	ATRP-tethering Anti-fouling/Anti-fogging Hydrophilic thin Hydrogel Layers on the Surface of Glass Slides. Polymer Science - Series A, 2021, 63, 705-711.	1.0	3
22	Using a Membrane-Penetrating-Peptide to Anchor Ligands in the Liposome Membrane Facilitates Targeted Drug Delivery. Bioconjugate Chemistry, 2020, 31, 113-122.	3.6	10
23	Lipid-mimicking peptide decorates erythrocyte membrane for active delivery to engrafted MDA-MB-231 breast tumour. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 72-84.	4.3	9
24	A flavonoid monomer tricin in Gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology. Food Chemistry, 2020, 320, 126617.	8.2	35
25	Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts, 2020, 5 , $1-15$.	20.5	304
26	Interactions between type A carbohydrate binding modules and cellulose studied with a quartz crystal microbalance with dissipation monitoring. Cellulose, 2020, 27, 3661-3675.	4.9	25
27	Grafting polycaprolactone onto alkaline lignin for improved compatibility and processability. International Journal of Biological Macromolecules, 2019, 141, 919-926.	7.5	15
28	Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks. Polymers, 2019, 11, 1886.	4.5	11
29	Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydrate Polymers, 2019, 206, 801-810.	10.2	45
30	Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose, 2019, 26, 933-944.	4.9	38
31	Comparison of the interactions between fungal cellulases from different origins and cellulose nanocrystal substrates with different polymorphs. Cellulose, 2018, 25, 1185-1195.	4.9	13
32	Binding preference of family 1 carbohydrate binding module on nanocrystalline cellulose and nanofibrillar cellulose films assessed by quartz crystal microbalance. Cellulose, 2018, 25, 3327-3337.	4.9	11
33	Au@ <i>h</i> -Al ₂ O ₃ analogic yolk–shell nanocatalyst for highly selective synthesis of biomass-derived <scp>d</scp> -xylonic acid <i>via</i> regulation of structure effects. Green Chemistry, 2018, 20, 5188-5195.	9.0	31
34	Application of Amphoteric Polyacrylamide Solely or with the Combination of Cationic Starch for Paper Strength Improvement. BioResources, 2018, 13 , .	1.0	7
35	Interactions between fungal cellulases and films of nanofibrillar cellulose determined by a quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose, 2017, 24, 1947-1956.	4.9	14
36	To understand the superior hydrolytic activity after polymorphic conversion from cellulose I to II from the adsorption behaviors of enzymes. Cellulose, 2017, 24, 1371-1381.	4.9	23

#	Article	IF	CITATIONS
37	Lignin-based catalysts for Chinese fir furfurylation to improve dimensional stability and mechanical properties. Industrial Crops and Products, 2017, 107, 38-44.	5.2	42
38	Novel Approach to Prepare Ultrathin Lignocellulosic Film for Monitoring Enzymatic Hydrolysis Process by Quartz Crystal Microbalance. ACS Sustainable Chemistry and Engineering, 2017, 5, 3837-3844.	6.7	16
39	Molecular Weight of Amphoteric Polyacrylamide: How it is Influenced by the Variables in Synthesis, and its Impacts on the Dry Strength of Paper Sheets. BioResources, 2016, 11, .	1.0	2
40	On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydrate Polymers, 2016, 143, 327-335.	10.2	160
41	Controlledâ€release drug carriers based hierarchical silica microtubes templated from cellulose acetate nanofibers. Journal of Applied Polymer Science, 2015, 132, .	2.6	8
42	Role of textile substrate hydrophobicity on the adsorption of hydrosoluble nonionic block copolymers. Journal of Colloid and Interface Science, 2015, 454, 89-96.	9.4	9
43	Adsorption of polyalkyl glycol ethers and triblock nonionic polymers on PET. Journal of Colloid and Interface Science, 2014, 420, 174-181.	9.4	8
44	Bimodal Mesoporous Silica Nanotubes Fabricated by Dual Templates of CTAB and Bare Nanocrystalline Cellulose. Industrial & Engineering Chemistry Research, 2014, 53, 708-714.	3.7	23
45	Adsorption of a siliconeâ€based surfactant on polyethylene and polypropylene surfaces and its tribologic performance. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
46	Comparison of sodium carbonate–oxygen and sodium hydroxide–oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw. Bioresource Technology, 2014, 161, 63-68.	9.6	46
47	Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers. Cellulose, 2013, 20, 1727-1736.	4.9	21
48	Synthesis of amphoteric cellulose in aqueous NaOH–urea solution in one pot and its application in paper strength enhancement. RSC Advances, 2013, 3, 24586.	3.6	19
49	PAPER CHEMISTRY: Approaching super-hydrophobicity from cellulosic materials: A Review. Nordic Pulp and Paper Research Journal, 2013, 28, 216-238.	0.7	150
50	FABRICATION OF HOLLOW SILICA NANORODS USING NANOCRYSTALLINE CELLULOSE AS TEMPLATES. BioResources, 2012, 7, .	1.0	14
51	A facile approach toward surface sulfonation of natural cotton fibers through epoxy reaction. Journal of Applied Polymer Science, 2012, 124, 1744-1750.	2.6	7
52	Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 2012, 19, 411-424.	4.9	132
53	Adsorption and Association of a Symmetric PEO-PPO-PEO Triblock Copolymer on Polypropylene, Polyethylene, and Cellulose Surfaces. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2349-2357.	8.0	58
54	Surface and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates. Industrial & Engineering Chemistry Research, 2010, 49, 8550-8557.	3.7	16

Junlong Song

#	Article	IF	CITATIONS
55	Effect of Charge Asymmetry on Adsorption and Phase Separation of Polyampholytes on Silica and Cellulose Surfaces. Journal of Physical Chemistry B, 2010, 114, 719-727.	2.6	32
56	Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films, 2009, 517, 4348-4354.	1.8	59
57	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 23-32.	4.7	22