List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The orienteering problem. Naval Research Logistics, 1987, 34, 307-318.	1.4	576
2	Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 2018, 72, 411-458.	1.6	568
3	The fleet size and mix vehicle routing problem. Computers and Operations Research, 1984, 11, 49-66.	2.4	385
4	The vehicle routing problem with drones: several worst-case results. Optimization Letters, 2017, 11, 679-697.	0.9	319
5	A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 1996, 88, 475-489.	3.5	275
6	Classification in vehicle routing and scheduling. Networks, 1981, 11, 97-108.	1.6	264
7	Very large-scale vehicle routing: new test problems, algorithms, and results. Computers and Operations Research, 2005, 32, 1165-1179.	2.4	207
8	The vehicle routing problem with drones: Extended models and connections. Networks, 2017, 70, 34-43.	1.6	202
9	The open vehicle routing problem: Algorithms, large-scale test problems, and computational results. Computers and Operations Research, 2007, 34, 2918-2930.	2.4	198
10	The Impact of Metaheuristics on Solving the Vehicle Routing Problem: Algorithms, Problem Sets, and Computational Results. , 1998, , 33-56.		194
11	Using Experimental Design to Find Effective Parameter Settings for Heuristics. Journal of Heuristics, 2001, 7, 77-97.	1.1	181
12	The Consistent Vehicle Routing Problem. Manufacturing and Service Operations Management, 2009, 11, 630-643.	2.3	161
13	A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 2007, 34, 2734-2742.	2.4	158
14	Using simulated annealing to solve routing and location problems. Naval Research Logistics Quarterly, 1986, 33, 261-279.	0.4	155
15	A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone. INFORMS Journal on Computing, 2019, 31, 335-346.	1.0	135
16	Multi-visit drone routing problem. Computers and Operations Research, 2020, 113, 104802.	2.4	130
17	Linear programming models for estimating weights in the analytic hierarchy process. Computers and Operations Research, 2005, 32, 2235-2254.	2.4	125
18	A library of local search heuristics for the vehicle routing problem. Mathematical Programming Computation, 2010, 2, 79-101.	3.2	125

#	Article	IF	CITATIONS
19	An improved heuristic for the period vehicle routing problem. Networks, 1995, 26, 25-44.	1.6	116
20	OR Practice—Computerized Vehicle Routing in the Soft Drink Industry. Operations Research, 1987, 35, 6-17.	1.2	98
21	Transforming arc routing into node routing problems. Computers and Operations Research, 1987, 14, 285-288.	2.4	89
22	Vehicle routing problems in which consistency considerations are important: A survey. Networks, 2014, 64, 192-213.	1.6	88
23	A New Heuristic for the Multi-Depot Vehicle Routing Problem that Improves upon Best-Known Solutions. American Journal of Mathematical and Management Sciences, 1993, 13, 371-406.	0.6	87
24	The split delivery vehicle routing problem: Applications, algorithms, test problems, and computational results. Networks, 2007, 49, 318-329.	1.6	87
25	Interval estimation of a global optimum for large combinatorial problems. Naval Research Logistics Quarterly, 1979, 26, 69-77.	0.4	86
26	Visualizing group decisions in the analytic hierarchy process. Computers and Operations Research, 2003, 30, 1435-1445.	2.4	82
27	The multi-depot split delivery vehicle routing problem: An integer programming-based heuristic, new test problems, and computational results. Computers and Industrial Engineering, 2011, 61, 794-804.	3.4	78
28	The Generalized Covering Salesman Problem. INFORMS Journal on Computing, 2012, 24, 534-553.	1.0	65
29	Solving the one-dimensional bin packing problem with a weight annealing heuristic. Computers and Operations Research, 2008, 35, 2283-2291.	2.4	61
30	The Mothership and Drone Routing Problem. INFORMS Journal on Computing, 2020, 32, 249-262.	1.0	59
31	A Parallel Algorithm for the Vehicle Routing Problem. INFORMS Journal on Computing, 2011, 23, 315-330.	1.0	58
32	The split delivery vehicle routing problem with minimum delivery amounts. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 612-626.	3.7	53
33	Carousel greedy: A generalized greedy algorithm with applications in optimization. Computers and Operations Research, 2017, 85, 97-112.	2.4	53
34	Estimating the length of the optimal TSP tour: An empirical study using regression and neural networks. Computers and Operations Research, 1995, 22, 1039-1046.	2.4	51
35	The period vehicle routing problem: New heuristics and real-world variants. Transportation Research, Part E: Logistics and Transportation Review, 2011, 47, 648-668.	3.7	51
36	Examining the discharge practices of surgeons at a large medical center. Health Care Management Science, 2011, 14, 338-347.	1.5	50

#	Article	IF	CITATIONS
37	A Genetic Algorithm-Based Approach for Building Accurate Decision Trees. INFORMS Journal on Computing, 2003, 15, 3-22.	1.0	45
38	Heuristic Search for the Generalized Minimum Spanning Tree Problem. INFORMS Journal on Computing, 2005, 17, 290-304.	1.0	42
39	Comparison of Metaheuristics. Profiles in Operations Research, 2010, , 625-640.	0.3	41
40	Reducing Boarding in a Postâ€Anesthesia Care Unit. Production and Operations Management, 2011, 20, 431-441.	2.1	40
41	Vehicle Routing by Land, Sea, and Air. Interfaces, 1992, 22, 1-3.	1.6	39
42	The impact of hospital utilization on patient readmission rate. Health Care Management Science, 2012, 15, 29-36.	1.5	39
43	Applying queueing theory to the study of emergency department operations: a survey and a discussion of comparable simulation studies. International Transactions in Operational Research, 2018, 25, 7-49.	1.8	39
44	Large-scale controlled rounding using tabu search with strategic oscillation. Annals of Operations Research, 1993, 41, 69-84.	2.6	38
45	Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem. Operations Research Letters, 2005, 33, 77-80.	0.5	37
46	A Computational Study Of A New Heuristic For The Site-Dependent Vehicle Routing Problem. Infor, 1999, 37, 319-336.	0.5	35
47	MRSA Transmission Reduction Using Agent-Based Modeling and Simulation. INFORMS Journal on Computing, 2010, 22, 635-646.	1.0	35
48	A novel approach to solve the split delivery vehicle routing problem. International Transactions in Operational Research, 2017, 24, 27-41.	1.8	35
49	Min–Max vs. Min–Sum Vehicle Routing: A worst-case analysis. European Journal of Operational Research, 2015, 240, 372-381.	3.5	34
50	A new heuristic for determining fleet size and composition. Mathematical Programming Studies, 1986, , 233-236.	0.8	33
51	Improved Heuristics for the Minimum Label Spanning Tree Problem. IEEE Transactions on Evolutionary Computation, 2006, 10, 700-703.	7.5	29
52	The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach. , 2007, , 165-181.		27
53	Using a Genetic Algorithm to Solve the Generalized Orienteering Problem. Operations Research/ Computer Science Interfaces Series, 2008, , 263-274.	0.3	27
54	Plowing with precedence: A variant of the windy postman problem. Computers and Operations Research, 2013, 40, 1047-1059.	2.4	27

#	Article	IF	CITATIONS
55	Life Is All about Timing: An Examination of Differences in Treatment Quality for Trauma Patients Based on Hospital Arrival Time. Production and Operations Management, 2014, 23, 2178-2190.	2.1	27
56	Applications of Agent-Based Modeling and Simulation to Healthcare Operations Management. Profiles in Operations Research, 2013, , 45-74.	0.3	24
57	The effective application of a new approach toÂtheÂgeneralized orienteering problem. Journal of Heuristics, 2010, 16, 393-415.	1.1	23
58	The min–max split delivery multi-depot vehicle routing problem with minimum service time requirement. Computers and Operations Research, 2016, 71, 110-126.	2.4	23
59	A visualization model based on adjacency data. Decision Support Systems, 2002, 33, 349-362.	3.5	21
60	Voice Interface Technology Adoption by Patients With Heart Failure: Pilot Comparison Study. JMIR MHealth and UHealth, 2021, 9, e24646.	1.8	21
61	Using Simulated Annealing to Solve Controlled Rounding Problems. ORSA Journal on Computing, 1990, 2, 174-185.	1.7	20
62	The hierarchical traveling salesman problem. Optimization Letters, 2013, 7, 1517-1524.	0.9	20
63	The Colorful Traveling Salesman Problem. , 2007, , 115-123.		20
64	Drivers of ED efficiency: a statistical and cluster analysis of volume, staffing, and operations. American Journal of Emergency Medicine, 2016, 34, 155-161.	0.7	19
65	A Steiner Zone Variable Neighborhood Search Heuristic for the Close-Enough Traveling Salesman Problem. Computers and Operations Research, 2019, 101, 200-219.	2.4	19
66	The multivisit drone routing problem with edge launches: An iterative approach with discrete and continuous improvements. Networks, 2022, 80, 193-215.	1.6	18
67	Vehicle Routing with Time-Window Constraints. American Journal of Mathematical and Management Sciences, 1986, 6, 251-260.	0.6	17
68	The prize-collecting generalized minimum spanning tree problem. Journal of Heuristics, 2008, 14, 69-93.	1.1	17
69	The min-max multi-depot vehicle routing problem: heuristics and computational results. Journal of the Operational Research Society, 2015, 66, 1430-1441.	2.1	17
70	Partitioning a street network into compact, balanced, and visually appealing routes. Networks, 2017, 69, 290-303.	1.6	16
71	A divide-and-conquer local search heuristic for data visualization. Computers and Operations Research, 2006, 33, 3070-3087.	2.4	14
72	The Multilevel Capacitated Minimum Spanning Tree Problem. INFORMS Journal on Computing, 2006, 18, 348-365.	1.0	13

5

#	Article	IF	CITATIONS
73	Solving the Time Dependent Traveling Salesman Problem. , 2005, , 163-182.		12
74	The balanced billing cycle vehicle routing problem. Networks, 2009, 54, 243-254.	1.6	12
75	The windy rural postman problem with a time-dependent zigzag option. European Journal of Operational Research, 2017, 258, 1131-1142.	3.5	12
76	A Steiner-Zone Heuristic for Solving the Close-Enough Traveling Salesman Problem. , 0, , .		12
77	Ranking US Army Generals of the 20th Century: A Group Decision-Making Application of the Analytic Hierarchy Process. Interfaces, 2007, 37, 163-175.	1.6	11
78	Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems. Computers and Operations Research, 2010, 37, 1952-1964.	2.4	11
79	Chapter 14: Vehicle Routing Applications in Disaster Relief. , 2014, , 409-436.		11
80	A worst-case analysis for the split delivery vehicle routing problem with minimum delivery amounts. Optimization Letters, 2013, 7, 1597-1609.	0.9	10
81	The impact of electronic health record implementation on emergency physician efficiency and patient throughput. Healthcare, 2014, 2, 201-204.	0.6	10
82	The downhill plow problem with multiple plows. Journal of the Operational Research Society, 2014, 65, 1465-1474.	2.1	10
83	Impact of Health Policy Changes on Emergency Medicine in Maryland Stratified by Socioeconomic Status. Western Journal of Emergency Medicine, 2017, 18, 356-365.	0.6	10
84	The Bin Packing Problem with Item Fragmentation:A worst-case analysis. Discrete Applied Mathematics, 2019, 261, 63-77.	0.5	9
85	A worst-case analysis for the split delivery capacitated team orienteering problem with minimum delivery amounts. Optimization Letters, 2014, 8, 2349-2356.	0.9	8
86	Aesthetic considerations for the minâ€max Kâ€Windy Rural Postman Problem. Networks, 2017, 70, 216-232.	1.6	8
87	Exploring the effects of network structure and healthcare worker behavior on the transmission of hospital-acquired infections. IIE Transactions on Healthcare Systems Engineering, 2012, 2, 259-273.	0.8	7
88	Predicting prostate cancer risk using magnetic resonance imaging data. Information Systems and E-Business Management, 2015, 13, 599-608.	2.2	7
89	An Open-Source Desktop Application for Generating Arc-Routing Benchmark Instances. INFORMS Journal on Computing, 2018, 30, 361-370.	1.0	7
90	A two-stage solution approach for the Directed Rural Postman Problem with Turn Penalties. European Journal of Operational Research, 2019, 272, 754-765.	3.5	7

BRUCE L GOLDEN

#	Article	IF	CITATIONS
91	The Label-Constrained Minimum Spanning Tree Problem. Operations Research/ Computer Science Interfaces Series, 2008, , 39-58.	0.3	6
92	A dynamic patient network model of hospital-acquired infections. , 2010, , .		6
93	An application of factorial design to compare the relative effectiveness of hospital infection control measures. , 2011, , .		6
94	Intelligent selection of frequent emergency department patients for case management: A machine learning framework based on claims data. IISE Transactions on Healthcare Systems Engineering, 2017, 7, 130-143.	1.2	6
95	Lognormal-based mixture models for robust fitting of hospital length of stay distributions. Operations Research for Health Care, 2019, 22, 100184.	0.8	6
96	Computational Comparison of Metaheuristics. Profiles in Operations Research, 2019, , 581-604.	0.3	6
97	Multi-period street scheduling and sweeping. International Journal of Metaheuristics, 2014, 3, 21.	0.1	5
98	Impact of Global Budget Revenue Policy on Emergency Department Efficiency in the State of Maryland. Western Journal of Emergency Medicine, 2019, 20, 885-992.	0.6	5
99	Evaluating preferences for colorectal cancer screening in individuals under age 50 using the Analytic Hierarchy Process. BMC Health Services Research, 2021, 21, 754.	0.9	5
100	The orienteering problem. , 1987, 34, 307.		5
101	Heuristic Search for Network Design. , 2005, , 1-1-1-46.		4
102	An empirical analysis of the effect of residents on emergency department treatment times. IIE Transactions on Healthcare Systems Engineering, 2013, 3, 171-180.	0.8	4
103	Early detection of bioterrorism: Monitoring disease using an agent-based model. , 2014, , .		4
104	Operations research models and methods in the screening, detection, and treatment of prostate cancer: A categorized, annotated review. Operations Research for Health Care, 2016, 8, 9-21.	0.8	4
105	Optimizing throughput of a multi-room proton therapy treatment center via simulation. , 2013, , .		3
106	Estimating the Tour Length for the Close Enough Traveling Salesman Problem. Algorithms, 2021, 14, 123.	1.2	3
107	A Flow Formulation for the Close-Enough Arc Routing Problem. Springer Proceedings in Mathematics and Statistics, 2017, , 539-546.	0.1	3
108	Using regression models to understand the impact of route-length variability in practical vehicle routing. Optimization Letters, 2023, 17, 163-175.	0.9	3

BRUCE L GOLDEN

#	Article	IF	CITATIONS
109	Site Location Applications. American Journal of Mathematical and Management Sciences, 1992, 12, 1-2.	0.6	2
110	A hybrid heuristic procedure for the Windy Rural Postman Problem with Zigzag Time Windows. Computers and Operations Research, 2017, 88, 247-257.	2.4	2
111	OAR Lib: an open source arc routing library. Mathematical Programming Computation, 2019, 11, 587-629.	3.2	2
112	An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for The Close-Enough Traveling Salesman Problem. INFORMS Journal on Computing, 2020, , .	1.0	2
113	The impact of the residency teaching model on the efficiency of the emergency department at an academic center. Socio-Economic Planning Sciences, 2013, 47, 183-190.	2.5	1
114	The power of linear programming: some surprising and unexpected LPs. 4or, 2021, 19, 15-40.	1.0	1
115	A continuous-time Markov model for estimating readmission risk for hospital inpatients. Journal of Applied Statistics, 2021, 48, 41-60.	0.6	1
116	Modeling and Solving the Intersection Inspection Rural Postman Problem. INFORMS Journal on Computing, 2021, 33, 1245-1257.	1.0	1
117	A fresh look at the Traveling Salesman Problem with a Center. Computers and Operations Research, 2022, 143, 105748.	2.4	1
118	Data-driven optimization and statistical modeling to improve meter reading for utility companies. Computers and Operations Research, 2022, , 105844.	2.4	1
119	An Operational Analysis Of Shell Planting Strategies For Improving The Survival Of Oyster Larvae In The Chesapeake Bay. Infor, 1996, 34, 181-196.	0.5	0
120	Experimental Graph Theory. Math Horizons, 2019, 27, 10-13.	0.0	0
121	Investigating cascading events for emergency departments in Baltimore City using a two-state Markov model. Operations Research for Health Care, 2021, 31, 100324.	0.8	0
122	Editorial: 2021 <scp>Gloverâ€Klingman</scp> Prize Winner. Networks, 2022, 80, 151-151.	1.6	0