List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfurized-Pyrolyzed Polyacrylonitrile Cathode for Magnesium-Sulfur Batteries Containing Mg2+/Li+ Hybrid Electrolytes. Chemical Engineering Journal, 2022, 427, 130902.	12.7	17
2	Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 65, 186-193.	12.9	15
3	A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 65, 616-622.	12.9	26
4	Dramatic improvement in high-rate capability of LiMnPO4 nanosheets via crystallite size regulation. Journal of Alloys and Compounds, 2022, 894, 162510.	5.5	14
5	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	16.0	19
6	Inâ€Situ Lattice Tunnel Intercalation of Vanadium Pentoxide for Improving Longâ€Term Performance of Rechargeable Magnesium Batteries. ChemNanoMat, 2022, 8, .	2.8	32
7	Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Materials, 2022, 50, 387-394.	18.0	23
8	Silica-nanoresin crosslinked composite polymer electrolyte for ambient-temperature all-solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 6502-6511.	5.9	16
9	Enhancing electrochemical performance of LiMnPO4 cathode via LiNi1/3Co1/3Mn1/3O2. Ionics, 2021, 27, 1899-1907.	2.4	4
10	Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. Chemical Engineering Journal, 2021, 410, 128415.	12.7	42
11	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	5.1	11
12	Coupling-Agent-Coordinated Uniform Polymer Coating on LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for Improved Electrochemical Performance at Elevated Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 26971-26980.	8.0	10
13	A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32957-32967.	8.0	19
14	In-situ mechanochemical synthesis of sub-micro Si/Sn@SiOx-C composite as high-rate anode material for lithium-ion batteries. Electrochimica Acta, 2021, 384, 138413.	5.2	12
15	An Efficient Bulky Mg[B(Otfe) ₄] ₂ Electrolyte and Its Derivatively General Design Strategy for Rechargeable Magnesium Batteries. ACS Energy Letters, 2021, 6, 3212-3220.	17.4	55
16	SnSe ₂ /FeSe ₂ Nanocubes Capsulated in Nitrogenâ€Doped Carbon Realizing Stable Sodiumâ€Ion Storage at Ultrahigh Rate. Small Methods, 2021, 5, e2100437.	8.6	26
17	Fabrication of Elastic Cyclodextrin-Based Triblock Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9402-9411.	5.1	16
18	Dendrite-Free and Micron-Columnar Li Metal Deposited from LiNO ₃ -Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 11336-11342.	5.1	7

#	Article	IF	CITATIONS
19	A crosslinking hydrogel binder for high-sulfur content S@pPAN cathode in rechargeable lithium batteries. Journal of Energy Chemistry, 2021, 60, 360-367.	12.9	16
20	Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review. Journal of Materials Science and Technology, 2021, 91, 168-177.	10.7	28
21	Artificial Alloy/Li ₃ N Double-Layer Enabling Stable High-Capacity Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 13132-13139.	5.1	10
22	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 7306-7318.	13.8	113
23	Metal Organic Framework (MOF)-Derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries. Journal of Power Sources, 2020, 445, 227325.	7.8	44
24	Suppressing H ₂ evolution by using a hydrogel for reversible Na storage in Na ₃ V ₂ (PO ₄) ₃ . RSC Advances, 2020, 10, 620-625.	3.6	7
25	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie, 2020, 132, 7374-7386.	2.0	30
26	Nanomaterials application in Liâ \in "Se and Naâ \in "Se batteries. , 2020, , 69-114.		3
27	Suppressing Dendrite Growth of a Lithium Metal Anode by Modifying Conventional Polypropylene Separators with a Composite Layer. ACS Applied Energy Materials, 2020, 3, 506-513.	5.1	24
28	Effect of copper to Selenium@Microporous carbon cathode for Mg–Se batteries with nucleophilic electrolyte. Electrochimica Acta, 2020, 330, 135354.	5.2	7
29	A superb 3D composite lithium metal anode prepared by in-situ lithiation of sulfurized polyacrylonitrile. Energy Storage Materials, 2020, 33, 452-459.	18.0	14
30	High-Safety and Long-Life Silicon-Based Lithium-Ion Batteries via a Multifunctional Binder. ACS Applied Materials & Interfaces, 2020, 12, 54842-54850.	8.0	26
31	Integrated Composite Polymer Electrolyte Cross-Linked with SiO ₂ -Reinforced Layer for Enhanced Li-Ion Conductivity and Lithium Dendrite Inhibition. ACS Applied Energy Materials, 2020, 3, 8552-8561.	5.1	18
32	Sodium Polyacrylate as a Promising Aqueous Binder of S@pPAN Cathodes for Magnesium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 20712-20721.	3.1	14
33	Polymer electrolytes for rechargeable lithium metal batteries. Sustainable Energy and Fuels, 2020, 4, 5469-5487.	4.9	41
34	High Performance Li-O ₂ Batteries Enabled with Manganese Sulfide as Cathode Catalyst. Journal of the Electrochemical Society, 2020, 167, 020520.	2.9	9
35	Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials, 2020, 31, 187-194.	18.0	28
36	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33702-33709.	8.0	34

#	Article	IF	CITATIONS
37	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	18.0	74
38	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	18.0	80
39	Ion conduction in the comb-branched polyether electrolytes with controlled network structures. Soft Matter, 2020, 16, 1979-1988.	2.7	14
40	Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano, 2020, 14, 5618-5627.	14.6	81
41	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	2.0	23
42	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	8.0	38
43	A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide–magnesium chloride complex for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2019, 7, 18295-18303.	10.3	32
44	Building high performance silicon–oxygen and silicon–sulfur battery by in-situ lithiation of fibrous Si/C anode. Journal of Alloys and Compounds, 2019, 806, 335-342.	5.5	7
45	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Longâ€Cycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	21.0	259
46	Sulfur-anchored azulene as a cathode material for Li–S batteries. Chemical Communications, 2019, 55, 9047-9050.	4.1	31
47	Bioinspired pomegranate-like microflowers confining core-shell binary Ni _x S _y nanobeads for efficient supercapacitors exhibiting a durable lifespan exceeding 100 000 cycles. Journal of Materials Chemistry A, 2019, 7, 3432-3442.	10.3	19
48	Cerium triflate as superoxide radical scavenger to improve cycle life of Li O2 battery. Journal of Power Sources, 2019, 414, 327-332.	7.8	13
49	Stable Na Metal Anode Enabled by a Reinforced Multistructural SEI Layer. Advanced Functional Materials, 2019, 29, 1901924.	14.9	107
50	Electrolytes for advanced lithium ion batteries using silicon-based anodes. Journal of Materials Chemistry A, 2019, 7, 9432-9446.	10.3	101
51	High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 9062-9072.	8.0	65
52	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	13.8	369
53	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€ S ulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	13.8	152
54	Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Materials, 2019, 20, 388-394.	18.0	30

#	Article	IF	CITATIONS
55	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	4.1	68
56	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	18.0	195
57	Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery. Electrochimica Acta, 2018, 273, 127-135.	5.2	74
58	High-performance Li-Se battery cathode based on CoSe 2 -porous carbon composites. Electrochimica Acta, 2018, 264, 341-349.	5.2	61
59	Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries. Energy Storage Materials, 2018, 14, 75-81.	18.0	33
60	A lithium-ion oxygen battery with a Si anode lithiated <i>in situ</i> by a Li ₃ N-containing cathode. Chemical Communications, 2018, 54, 1069-1072.	4.1	23
61	Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction. Electrochimica Acta, 2018, 261, 503-512.	5.2	39
62	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chemical Communications, 2018, 54, 5478-5481.	4.1	44
63	Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2018, 2, 950-961.	24.0	316
64	Nano-/Microhierarchical-Structured LiMn _{0.85} Fe _{0.15} PO ₄ Cathode Material for Advanced Lithium Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 43552-43560.	8.0	15
65	A fumed alumina induced gel-like electrolyte for great performance improvement of lithium–sulfur batteries. Chemical Communications, 2018, 54, 13567-13570.	4.1	17
66	Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries. ACS Applied Energy Materials, 2018, 1, 6769-6773.	5.1	31
67	A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Chemical Science, 2018, 9, 8829-8835.	7.4	36
68	Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes. Journal of Physical Chemistry C, 2018, 122, 26764-26776.	3.1	53
69	Low-Cost Nickel Phosphide as an Efficient Bifunctional Cathode Catalyst for Li-O ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A2904-A2908.	2.9	11
70	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	18.0	92
71	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	4.1	28
72	A conductive selenized polyacrylonitrile cathode in nucleophilic Mg ²⁺ /Li ⁺ hybrid electrolytes for magnesium–selenium batteries. Journal of Materials Chemistry A, 2018, 6, 17075-17085.	10.3	35

#	Article	IF	CITATIONS
73	A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018, 282, 555-562.	5.2	37
74	LiMnPO4·Li3V2(PO4)3 composite cathode material derived from Mn(VO3)2 nanosheet precursor. Journal of Alloys and Compounds, 2017, 695, 1813-1820.	5.5	4
75	Electrospun V 2 MoO 8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy, 2017, 34, 26-35.	16.0	85
76	A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. Journal of Materials Chemistry A, 2017, 5, 9350-9357.	10.3	94
77	Enhanced Electrochemical Performance of Non-Aqueous Li-O ₂ Batteries with Triethylene Glycol Dimethyl Ether-Based Electrolyte. Journal of the Electrochemical Society, 2017, 164, A1321-A1327.	2.9	11
78	Tea polyphenol-inspired tannic acid-treated polypropylene membrane as a stable separator for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 12782-12786.	10.3	34
79	Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale, 2017, 9, 8871-8878.	5.6	81
80	Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 1919-1924.	10.3	90
81	Effects of binders on the electrochemical performance of rechargeable magnesium batteries. Journal of Power Sources, 2017, 341, 219-229.	7.8	46
82	A stable organic–inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries. Journal of Power Sources, 2017, 366, 265-269.	7.8	42
83	Prelithiation Activates Fe ₂ (MoO ₄) ₃ Cathode for Rechargeable Hybrid Mg ²⁺ /Li ⁺ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38455-38466.	8.0	26
84	A methyl pivalate based electrolyte for non-aqueous lithium–oxygen batteries. Chemical Communications, 2017, 53, 10426-10428.	4.1	5
85	Application of a Sulfur Cathode in Nucleophilic Electrolytes for Magnesium/Sulfur Batteries. Journal of the Electrochemical Society, 2017, 164, A2504-A2512.	2.9	55
86	High performance nano-sized LiMn _{1â^'x} Fe _x PO ₄ cathode materials for advanced lithium-ion batteries. RSC Advances, 2017, 7, 43708-43715.	3.6	7
87	Carbon-coated graphene/antimony composite with a sandwich-like structure for enhanced sodium storage. Journal of Materials Chemistry A, 2017, 5, 20623-20630.	10.3	27
88	A Lithiated Perfluorinated Sulfonic Acid Polymer Electrolyte for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2017, 164, A2031-A2037.	2.9	15
89	NiMn ₂ O ₄ as an efficient cathode catalyst for rechargeable lithium–air batteries. Chemical Communications, 2017, 53, 8164-8167.	4.1	33
90	Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2017, 5, 16732-16739.	10.3	42

#	Article	IF	CITATIONS
91	Li ₂ O ₂ as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications, 2017, 53, 8324-8327.	4.1	65
92	A new electrolyte with good compatibility to a lithium anode for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 47820-47823.	3.6	8
93	A High-Performance Rechargeable Mg ²⁺ /Li ⁺ Hybrid Battery Using One-Dimensional Mesoporous TiO ₂ (B) Nanoflakes as the Cathode. ACS Applied Materials & Interfaces, 2016, 8, 7111-7117.	8.0	81
94	A SnO ₂ -Based Cathode Catalyst for Lithium-Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 12804-12811.	8.0	30
95	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie, 2016, 128, 10528-10531.	2.0	28
96	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 10372-10375.	13.8	124
97	A Facile 3D Binding Approach for High Si Loading Anodes. Electrochimica Acta, 2016, 212, 141-146.	5.2	17
98	SiO _x and carbon double-layer coated Si nanorods as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 101008-101015.	3.6	10
99	Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte. Chemical Communications, 2016, 52, 14430-14433.	4.1	18
100	Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 2016, 52, 13479-13482.	4.1	66
101	A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports, 2016, 6, 21771.	3.3	158
102	Mn _{0.5} Co _{2.5} O ₄ nanofibers sandwiched in graphene sheets for efficient supercapacitor electrode materials. RSC Advances, 2016, 6, 103923-103929.	3.6	10
103	Magnesium Borohydride-Based Electrolytes Containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide Ionic Liquid for Rechargeable Magnesium Batteries. Journal of the Electrochemical Society, 2016, 163, D682-D688.	2.9	34
104	Graphite fluoride as a cathode material for primary magnesium batteries with high energy density. Electrochimica Acta, 2016, 210, 704-711.	5.2	25
105	Scalable and Costâ€Effective Preparation of Hierarchical Porous Silicon with a High Conversion Yield for Superior Lithiumâ€lon Storage. Energy Technology, 2016, 4, 593-599.	3.8	17
106	Effect of Mg ²⁺ /Li ⁺ mixed electrolytes on a rechargeable hybrid battery with Li ₄ Ti ₅ O ₁₂ cathode and Mg anode. RSC Advances, 2016, 6, 3231-3234.	3.6	50
107	Ethylene sulfite based electrolyte for non-aqueous lithium oxygen batteries. Chinese Chemical Letters, 2016, 27, 1485-1489.	9.0	11
108	Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 2899-2904.	8.0	106

#	Article	IF	CITATIONS
109	Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 2286-2292.	10.3	84
110	Highly Reversible Lithiumâ€ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 2621-2624.	6.8	14
111	High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. Journal of Power Sources, 2015, 276, 255-261.	7.8	50
112	A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical Communications, 2015, 51, 2641-2644.	4.1	113
113	Porous microspherical silicon composite anode material for lithium ion battery. Electrochimica Acta, 2015, 178, 65-73.	5.2	25
114	Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 2015, 19, 3347-3353.	2.5	30
115	Enhanced performance of Li-O2 battery based on CFx/C composites as cathode materials. Electrochimica Acta, 2015, 186, 631-641.	5.2	7
116	Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochimica Acta, 2015, 152, 489-495.	5.2	92
117	Sulfurâ€Based Composite Cathode Materials for Highâ€Energy Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 569-575.	21.0	293
118	Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	13
119	Hierarchical Sulfurâ€Based Cathode Materials with Long Cycle Life for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 563-569.	6.8	82
120	Towards a Safe Lithium–Sulfur Battery with a Flameâ€Inhibiting Electrolyte and a Sulfurâ€Based Composite Cathode. Angewandte Chemie - International Edition, 2014, 53, 10099-10104.	13.8	178
121	TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chemical Communications, 2014, 50, 7011-7013.	4.1	52
122	Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 2014, 271, 291-297.	7.8	307
123	Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage. Industrial & Engineering Chemistry Research, 2014, 53, 12697-12704.	3.7	49
124	A polyimide ion-conductive protection layer to suppress side reactions on Li4Ti5O12electrodes at elevated temperature. RSC Advances, 2014, 4, 10280-10283.	3.6	13
125	Nano/micro-structured Si/CNT/C composite from nano-SiO ₂ for high power lithium ion batteries. Nanoscale, 2014, 6, 12532-12539.	5.6	81
126	Halogen-free boron based electrolyte solution for rechargeable magnesium batteries. Journal of Power Sources, 2014, 248, 690-694.	7.8	28

#	Article	IF	CITATIONS
127	A novel thiolate-based electrolyte system for rechargeable magnesium batteries. Electrochimica Acta, 2014, 121, 258-263.	5.2	16
128	Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl)phosphate Additive for Lithium Rich Cathode Materials. Electrochimica Acta, 2014, 117, 99-104.	5.2	74
129	Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors. Scientific Reports, 2014, 4, 7054.	3.3	101
130	Low-cost SiO-based anode using green binders for lithium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2461-2469.	2.5	34
131	Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochimica Acta, 2013, 103, 96-102.	5.2	40
132	Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation. Physical Chemistry Chemical Physics, 2013, 15, 19353.	2.8	19
133	Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. Journal of Power Sources, 2013, 223, 18-22.	7.8	51
134	Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes. Industrial & Engineering Chemistry Research, 2013, 52, 1197-1204.	3.7	116
135	Carbonylâ€ <i>β</i> yclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1194-1201.	14.9	240
136	Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. Journal of Power Sources, 2013, 237, 285-290.	7.8	110
137	Study of spinel Li4Ti5O12 electrode reaction mechanism by electrochemical impedance spectroscopy. Electrochimica Acta, 2013, 108, 841-851.	5.2	40
138	A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. Journal of Membrane Science, 2013, 425-426, 105-112.	8.2	119
139	Reversible Deposition and Dissolution of Magnesium from Imidazolium-Based Ionic Liquids. International Journal of Electrochemistry, 2012, 2012, 1-8.	2.4	16
140	Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy and Environmental Science, 2012, 5, 9100.	30.8	187
141	Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. Journal of Applied Electrochemistry, 2012, 42, 989-995.	2.9	91
142	Dual-mode sulfur-based cathode materials for rechargeable Li–S batteries. Chemical Communications, 2012, 48, 7868.	4.1	49
143	A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chemical Communications, 2012, 48, 10763.	4.1	86
144	Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy and Environmental Science, 2012, 5, 6966.	30.8	455

#	Article	IF	CITATIONS
145	Nanosheetâ€Constructed Porous TiO ₂ –B for Advanced Lithium Ion Batteries. Advanced Materials, 2012, 24, 3201-3204.	21.0	360
146	Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts. Electrochemistry Communications, 2012, 18, 24-27.	4.7	36
147	Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochimica Acta, 2012, 66, 75-81.	5.2	77
148	A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Advances, 2011, 1, 958.	3.6	85
149	A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry, 2011, 21, 6807.	6.7	193
150	Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. Journal of Materials Chemistry, 2011, 21, 12437.	6.7	51
151	Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. Journal of Power Sources, 2011, 196, 10258-10262.	7.8	87
152	MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage. Electrochemistry Communications, 2011, 13, 1143-1146.	4.7	56
153	Electrodeposited porous-microspheres Li–Si films as negative electrodes in lithium-ion batteries. Journal of Power Sources, 2011, 196, 3868-3873.	7.8	37
154	MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Science Bulletin, 2011, 56, 386-390.	1.7	52
155	Novel Threeâ€Dimensional Mesoporous Silicon for High Power Lithiumâ€ion Battery Anode Material. Advanced Energy Materials, 2011, 1, 1036-1039.	19.5	374
156	CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications, 2011, 13, 399-402.	4.7	165
157	Reversibility of electrochemical magnesium deposition from tetrahydrofuran solutions containing pyrrolidinyl magnesium halide. Electrochimica Acta, 2011, 56, 6530-6535.	5.2	48
158	Novel hedgehog-like 5V LiCoPO4 positive electrode material for rechargeable lithium battery. Journal of Power Sources, 2011, 196, 4806-4810.	7.8	70
159	Highly promoted electrochemical performance of 5 V LiCoPO4 cathode material by addition of vanadium. Journal of Power Sources, 2010, 195, 6884-6887.	7.8	87
160	Study of electronic effect of Grignard reagents on their electrochemical behavior. Electrochemistry Communications, 2010, 12, 1671-1673.	4.7	52
161	Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries. Chemical Communications, 2010, 46, 9149.	4.1	44
162	Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chemical Communications, 2010, 46, 3794.	4.1	129

#	Article	IF	CITATIONS
163	Effect of over-oxidation treatment of Pt–Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. International Journal of Hydrogen Energy, 2009, 34, 3908-3914.	7.1	67
164	Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Physical Chemistry Chemical Physics, 2009, 11, 11101.	2.8	130
165	Electrochemical Intercalation of Mg ²⁺ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode. Journal of Physical Chemistry C, 2009, 113, 12594-12597.	3.1	82
166	Synthesis and electrochemical performance of carbon nanofiber–cobalt oxide composites. Electrochimica Acta, 2008, 53, 7326-7330.	5.2	88
167	Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. Journal of Power Sources, 2008, 176, 369-372.	7.8	82
168	Sol–gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior. Journal of Power Sources, 2008, 184, 604-609.	7.8	84
169	Synthesis and characterization of bimetallic Pt–Fe/polypyrrole–carbon catalyst as DMFC anode catalyst. Electrochemistry Communications, 2008, 10, 876-879.	4.7	67
170	Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. Electrochemistry Communications, 2008, 10, 1291-1294.	4.7	63
171	Co@Pt–Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochemistry Communications, 2008, 10, 1527-1529.	4.7	51
172	Fluorine-doped LiNi0.5Mn1.5O4 for 5V cathode materials of lithium-ion battery. Materials Research Bulletin, 2008, 43, 3607-3613.	5.2	72
173	Multilayered Cobalt Oxide Platelets for Negative Electrode Material of a Lithium-Ion Battery. Journal of the Electrochemical Society, 2008, 155, A903.	2.9	151
174	Conductive Sulfur-Containing Material/Polyaniline Composite for Cathode Material of Rechargeable Magnesium Batteries. Acta Physico-chimica Sinica, 2007, 23, 327-331.	0.6	13
175	Room temperature Na/S batteries with sulfur composite cathode materials. Electrochemistry Communications, 2007, 9, 31-34.	4.7	195
176	Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochimica Acta, 2007, 52, 5863-5867.	5.2	82
177	Nano-tin alloys dispersed in oxides for lithium storage materials. Journal of Power Sources, 2007, 174, 624-627.	7.8	17
178	Preparation of Carbon-Supported Coreâ^'Shell Auâ^'Pt Nanoparticles for Methanol Oxidation Reaction:Â The Promotional Effect of the Au Core. Journal of Physical Chemistry B, 2006, 110, 24606-24611.	2.6	267
179	Cu5Si–Si/C composites for lithium-ion battery anodes. Journal of Power Sources, 2006, 153, 371-374.	7.8	46
180	Additive-containing ionic liquid electrolytes for secondary lithium battery. Journal of Power Sources, 2006, 160, 621-626.	7.8	91

#	Article	IF	CITATIONS
181	Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. Journal of Applied Electrochemistry, 2006, 36, 1099-1104.	2.9	149
182	Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics, 2005, 176, 1249-1260.	2.7	91
183	Lithium storage in conductive sulfur-containing polymers. Journal of Electroanalytical Chemistry, 2004, 573, 121-128.	3.8	205
184	Polymer lithium cells with sulfur composites as cathode materials. Electrochimica Acta, 2003, 48, 1861-1867.	5.2	129
185	Effect of Synthesis Processes on the Microstructure and Electrochemical Properties of LiMnPO4 Cathode Material. Industrial & Engineering Chemistry Research, 0, , .	3.7	4