Grzegorz Piszczek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918912/publications.pdf

Version: 2024-02-01

65 papers

2,912 citations

218592 26 h-index 50 g-index

70 all docs

70 docs citations

times ranked

70

4588 citing authors

#	Article	IF	Citations
1	Rapid characterization of adeno-associated virus (AAV) gene therapy vectors by mass photometry. Gene Therapy, 2022, 29, 691-697.	2.3	27
2	Virus-like Particle Display of <i>Vibrio cholerae O</i> -Specific Polysaccharide as a Potential Vaccine against Cholera. ACS Infectious Diseases, 2022, 8, 574-583.	1.8	12
3	Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. , 2022, 1, .		36
4	Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Science Advances, 2022, 8, .	4.7	27
5	Rapid Determination of Antibody-Antigen Affinity by Mass Photometry. Journal of Visualized Experiments, 2021, , .	0.2	7
6	Standard protocol for mass photometry experiments. European Biophysics Journal, 2021, 50, 403-409.	1.2	43
7	Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. ELife, 2021, 10, .	2.8	12
8	A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA. European Biophysics Journal, 2021, 50, 429-451.	1.2	12
9	Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study. European Biophysics Journal, 2021, 50, 411-427.	1.2	13
10	Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. IScience, 2021, 24, 102523.	1.9	34
11	Measuring the affinity of protein-protein interactions on a single-molecule level by mass photometry. Analytical Biochemistry, 2020, 592, 113575.	1.1	41
12	Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. Journal of Biological Chemistry, 2020, 295, 4114-4123.	1.6	18
13	Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions. Methods in Molecular Biology, 2019, 1964, 75-87.	0.4	9
14	Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters. Molecular Cell, 2018, 69, 426-437.e7.	4.5	147
15	The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4868-E4876.	3.3	40
16	Effect of ATP and regulatory light-chain phosphorylation on the polymerization of mammalian nonmuscle myosin II. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6516-E6525.	3.3	26
17	Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nature Structural and Molecular Biology, 2017, 24, 717-725.	3 . 6	97
18	Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance. PLoS ONE, 2017, 12, e0185359.	1.1	12

#	Article	IF	CITATIONS
19	V-1 regulates capping protein activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6610-E6619.	3.3	26
20	Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C. Biochemical and Biophysical Research Communications, 2015, 457, 561-566.	1.0	19
21	Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nature Methods, 2015, 12, 215-218.	9.0	173
22	SEDPHAT $\hat{a}\in$ A platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods, 2015, 76, 137-148.	1.9	264
23	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	1.1	71
24	Nonenzymatic Conversion of ADP-Ribosylated Arginines to Ornithine Alters the Biological Activities of Human Neutrophil Peptide-1. Journal of Immunology, 2014, 193, 6144-6151.	0.4	6
25	Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1970-9.	3.3	62
26	Structure of Transmembrane Domain of Lysosome-associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-mediated Autophagy. Journal of Biological Chemistry, 2014, 289, 35111-35123.	1.6	63
27	Accounting for Photophysical Processes and Specific Signal Intensity Changes in Fluorescence-Detected Sedimentation Velocity. Analytical Chemistry, 2014, 86, 9286-9292.	3.2	11
28	Measurement of the temperature of the resting rotor in analytical ultracentrifugation. Analytical Biochemistry, 2014, 458, 37-39.	1.1	14
29	Biochemical and biological properties of cortexillin III, a component of∢i>Dictyostelium∢/i>DGAP1–cortexillin complexes. Molecular Biology of the Cell, 2014, 25, 2026-2038.	0.9	3
30	An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins. PLoS ONE, 2014, 9, e95808.	1.1	23
31	Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Analytical Biochemistry, 2013, 440, 81-95.	1.1	60
32	Tubulin Tyrosine Ligase and Stathmin Compete for Tubulin Binding In Vitro. Journal of Molecular Biology, 2013, 425, 2412-2414.	2.0	13
33	Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Analytical Biochemistry, 2013, 437, 104-108.	1.1	102
34	Functional Role of Methylation of G518 of the 16S rRNA 530 Loop by GidB in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 6311-6318.	1.4	42
35	The Maturational Refolding of the \hat{l}^2 -Hairpin Motif of Equine Infectious Anemia Virus Capsid Protein Extends Its Helix $\hat{l}\pm 1$ at Capsid Assembly Locus. Journal of Biological Chemistry, 2013, 288, 1511-1520.	1.6	12
36	Crystal Structures of Tubulin Acetyltransferase Reveal a Conserved Catalytic Core and the Plasticity of the Essential N Terminus. Journal of Biological Chemistry, 2012, 287, 41569-41575.	1.6	32

3

#	Article	IF	CITATIONS
37	Structural Insights into the Catalytic Mechanism of Escherichia coli Selenophosphate Synthetase. Journal of Bacteriology, 2012, 194, 499-508.	1.0	21
38	Characterization and Solution Structure of Mouse Myristoylated Methionine Sulfoxide Reductase A. Journal of Biological Chemistry, 2012, 287, 25589-25595.	1.6	15
39	High-Precision Isothermal Titration Calorimetry with Automated Peak-Shape Analysis. Analytical Chemistry, 2012, 84, 5066-5073.	3.2	440
40	Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nature Structural and Molecular Biology, 2011, 18, 1250-1258.	3.6	114
41	Deuteration of Escherichia coli Enzyme INtr alters its stability. Archives of Biochemistry and Biophysics, 2011, 507, 332-342.	1.4	15
42	The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis. Journal of Biological Chemistry, 2011, 286, 23533-23543.	1.6	21
43	Biochemical, Proteomic, Structural, and Thermodynamic Characterizations of Integrin-linked Kinase (ILK). Journal of Biological Chemistry, 2011, 286, 21886-21895.	1.6	65
44	Molecular Basis for Barbed End Uncapping by CARMIL Homology Domain 3 of Mouse CARMIL-1. Journal of Biological Chemistry, 2010, 285, 29014-29026.	1.6	27
45	Novel Protective Mechanism against Irreversible Hyperoxidation of Peroxiredoxin. Journal of Biological Chemistry, 2009, 284, 13455-13465.	1.6	43
46	Extensibility of the Extended Tail Domain of Processive and Nonprocessive Myosin V Molecules. Biophysical Journal, 2009, 97, 3123-3131.	0.2	9
47	Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics. Archives of Biochemistry and Biophysics, 2006, 453, 54-62.	1.4	33
48	The Molecular Chaperone, ClpA, Has a Single High Affinity Peptide Binding Site per Hexamer. Journal of Biological Chemistry, 2005, 280, 12221-12230.	1.6	28
49	Calcium-binding calmyrin forms stable covalent dimers in vitro, but in vivo is found in monomeric form. Acta Biochimica Polonica, 2005, 52, 469-76.	0.3	4
50	On the conformational stability and dimerization of phosphotransferase enzyme I from Escherichia coli. Thermochimica Acta, 2004, 420, 37-43.	1.2	1
51	Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli. Biochemical Journal, 2004, 381, 97-103.	1.7	26
52	Four-Photon Excitation of 2,2â€~-Dimethyl-p-terphenyl. Journal of Physical Chemistry A, 2002, 106, 754-759.	1.1	10
53	Lateral Diffusion Coefficients in Membranes Measured by Resonance Energy Transfer and a New Algorithm for Diffusion in Two Dimensions. Biophysical Journal, 2002, 82, 1358-1372.	0.2	40
54	High-molecular-weight protein hydrodynamics studied with a long-lifetime metal-ligand complex. BBA - Proteins and Proteomics, 2002, 1597, 221-228.	2.1	8

#	Article	IF	Citations
55	DNA dynamics: a fluorescence resonance energy transfer study using a long-lifetime metal-ligand complex. Archives of Pharmacal Research, 2002, 25, 143-150.	2.7	16
56	Multi-Photon Sensitized Excitation of Near Infrared Emitting Lanthanides. Journal of Fluorescence, 2002, 12, 15-17.	1.3	52
57	Enhanced Emission Induced by FRET from a Long-Lifetime, Low Quantum Yield Donor to a Long-Wavelength, High Quantum Yield Acceptor. Journal of Fluorescence, 2002, 12, 97-103.	1.3	45
58	On the Possibility of Long-Wavelength Long-Lifetime High-Quantum-Yield Luminophores. Analytical Biochemistry, 2001, 288, 62-75.	1.1	69
59	Multiphoton Excitation of Lanthanides. ChemPhysChem, 2001, 2, 247-252.	1.0	43
60	Multiphoton Ligand-Enhanced Excitation of Lanthanides. Journal of Fluorescence, 2001, 11, 101-107.	1.3	71
61	Microsecond dynamics of biological macromolecules. Methods in Enzymology, 2000, 323, 473-509.	0.4	25
62	Donor fluorescence decay analysis for energy transfer in double-helical DNA with various acceptor concentrations. Biopolymers, 2000, 57, 306-315.	1.2	27
63	Effects of diffusion on energy transfer in solution using a microsecond decay time rhenium metal–ligand complex as the donor. Chemical Physics Letters, 2000, 319, 661-668.	1.2	10
64	End-to-End Diffusion on the Microsecond Timescale Measured with Resonance Energy Transfer from a Long-lifetime Rhenium Metal–Ligand Complex. Photochemistry and Photobiology, 2000, 71, 157.	1.3	8
65	End-to-End Diffusion on the Microsecond Timescale Measured with Resonance Energy Transfer from a Long-lifetime Rhenium Metal-Ligand Complex. Photochemistry and Photobiology, 2000, 71, 157-161.	1.3	1