Lisa Lamothe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918817/publications.pdf Version: 2024-02-01

LISALAMOTHE

#	Article	IF	CITATIONS
1	Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry, 2015, 167, 490-496.	4.2	155
2	Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 2017, 233, 1-10.	4.2	115
3	Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients, 2019, 11, 1729.	1.7	109
4	Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food and Function, 2017, 8, 1166-1173.	2.1	99
5	Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 2020, 60, 123-146.	5.4	40
6	The scientific basis for healthful carbohydrate profile. Critical Reviews in Food Science and Nutrition, 2019, 59, 1058-1070.	5.4	30
7	Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-î±-glucanotransferase enzymes. PLoS ONE, 2017, 12, e0172622.	1.1	26
8	Optimization of in vitro carbohydrate digestion by mammalian mucosal α-glucosidases and its applications to hydrolyze the various sources of starches. Food Hydrocolloids, 2019, 87, 470-476.	5.6	25
9	Predicting Glycemic Index and Glycemic Load from Macronutrients to Accelerate Development of Foods and Beverages with Lower Glucose Responses. Nutrients, 2019, 11, 1172.	1.7	22
10	Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes. Journal of Agricultural and Food Chemistry, 2020, 68, 6664-6671.	2.4	18
11	The Effect of Wet Milling and Cryogenic Milling on the Structure and Physicochemical Properties of Wheat Bran. Foods, 2020, 9, 1755.	1.9	14
12	Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food and Function, 2021, 12, 10658-10666.	2.1	13
13	Determination of glucose generation rate from various types of glycemic carbohydrates by mammalian glucosidases anchored in the small intestinal tissue. International Journal of Biological Macromolecules, 2020, 154, 751-757.	3.6	12
14	Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods, 2021, 10, 2566.	1.9	12
15	New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels. Food Chemistry, 2022, 383, 132456.	4.2	11
16	The Effect of Arabinoxylan and Wheat Bran Incorporation on Dough Rheology and Thermal Processing of Rotary-Moulded Biscuits. Foods, 2021, 10, 2335.	1.9	9
17	Extrusion-cooking affects oat bran physicochemical and nutrition-related properties and increases its β-glucan extractability. Journal of Cereal Science, 2021, 102, 103360.	1.8	8
18	A Decentralized Study Setup Enables to Quantify the Effect of Polymerization and Linkage of α-Glucans on Post-Prandial Glucose Response. Nutrients, 2022, 14, 1123.	1.7	4

#	Article	IF	CITATIONS
19	Changing Wheat Bran Structural Properties by Extrusion-Cooking on a Pilot and Industrial Scale: A Comparative Study. Foods, 2021, 10, 472.	1.9	2