Sittipong Amnuaypanich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918204/publications.pdf

Version: 2024-02-01

840776 713466 21 432 11 21 citations g-index h-index papers 22 22 22 539 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increasing solketal production from the solventless ketalization of glycerol catalyzed by nanodispersed phosphotungstic acid in poly(N-methyl-4-vinylpyridinium) grafted on silica nanoparticles. Journal of Industrial and Engineering Chemistry, 2022, 112, 233-243.	5.8	4
2	Temperature-enhanced water selectivity in polyvinyl alcohol mixed matrix membranes filled with poly(2-hydroxyethylmethacrylate)-grafted mesoporous silica nanoparticles (PVA/MSNs-g-PHEMA) Tj ETQq0 0 0	rgB T∙,∮ Over	lock 10 Tf 50 6
3	Polydimethylsiloxane Sponges Incorporated with Mesoporous Silica Nanoparticles (PDMS/H-MSNs) and Their Selective Solvent Absorptions. Industrial & Engineering Chemistry Research, 2019, 58, 21142-21154.	3.7	20
4	Rapid decolorization of methyl orange using polyacrylonitrile membranes incorporated with nickel nanoparticles loaded in block copolymer micelles. Separation and Purification Technology, 2019, 223, 203-210.	7.9	4
5	Green synthesis of porous polyvinyl alcohol membranes functionalized with ⟨scp⟩l⟨ scp⟩â€arginine and their application in the removal of 4â€nitrophenol from aqueous solution. Journal of Applied Polymer Science, 2019, 136, 47835.	2.6	12
6	Highly catalytic activity of nickel nanoparticles generated in poly(methylmethacrylate)@poly(2-hydroxyethylmethacrylate) (PMMA@PHEMA) core–shell micelles for the reduction of 4-nitrophenol (4-NP). Applied Nanoscience (Switzerland), 2018, 8, 475-488.	3.1	5
7	Biphasic synthesis of amine-functionalized mesoporous silica nanospheres (MSN-NH2) and its application for removal of ferrous (Fe2+) and copper (Cu2+) ions. Powder Technology, 2018, 323, 548-557.	4.2	35
8	Dehydration performance of double-network poly(vinyl alcohol) nanocomposite membranes (PVAs-DN). Journal of Membrane Science, 2017, 528, 284-295.	8.2	18
9	Promoting permeability-selectivity anti-trade-off behavior in polyvinyl alcohol (PVA) nanocomposite membranes. Journal of Membrane Science, 2017, 544, 287-296.	8.2	32
10	Improved Lactic Acid Production by In Situ Removal of Lactic Acid During Fermentation and a Proposed Scheme for Its Recovery. Arabian Journal for Science and Engineering, 2016, 41, 2067-2075.	1.1	29
11	Ferromagnetism in Metal-Free Polymers. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	5
12	Improving water selectivity of poly (vinyl alcohol) (PVA) – Fumed silica (FS) nanocomposite membranes by grafting of poly (2-hydroxyethyl methacrylate) (PHEMA) on fumed silica particles. Chemical Engineering Science, 2015, 122, 373-383.	3.8	21
13	Enhancing the grafting of poly(2-hydroxyethyl methacrylate) on silica nanoparticles (SiO2-g-PHEMA) by the sequential UV-induced graft polymerization with a multiple-UV irradiation. Advanced Powder Technology, 2014, 25, 1304-1310.	4.1	10
14	Grafting of poly(vinyl alcohol) on natural rubber latex particles. Journal of Applied Polymer Science, 2013, 127, 104-110.	2.6	17
15	Development of pH-responsive polymer-grafted mesoporous silica. Transactions of the Materials Research Society of Japan, 2013, 38, 597-601.	0.2	1
16	Highly waterâ€selective mixed matrix membranes from natural rubberâ€∢i>blend⟨/i>â€poly(acrylic acid) (NRâ€∢i>blend⟨/i>â€PAA) incorporated with zeolite 4A for the dehydration of water–ethanol mixtures through pervaporation. Journal of Applied Polymer Science, 2012, 124, E319.	2.6	13
17	Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethyl methacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water–acetone mixtures. Journal of Membrane Science, 2011, 367, 182-189.	8.2	74
18	Membranes Prepared from a Blend of Poly(acrylic Acid) and Natural Rubber-Graft-Poly(vinyl Alcohol) (PAA/NR-g-PVA). Advanced Materials Research, 2010, 93-94, 268-271.	0.3	5

#	ARTICLE	IF	CITATIONS
19	Pervaporation membranes from natural rubber latex grafted with poly(2â€hydroxyethyl methacrylate) (NRâ€ <i>g</i> à€PHEMA) for the separation of water–acetone mixtures. Journal of Applied Polymer Science, 2009, 113, 3313-3321.	2.6	17
20	Natural rubber/poly(acrylic acid) semiâ€interpenetrating polymer network membranes for the pervaporation of water–ethanol mixtures. Journal of Applied Polymer Science, 2009, 114, 3501-3509.	2.6	23
21	Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. Chemical Engineering Science, 2009, 64, 4908-4918.	3.8	83