
Michael Riediker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Particulate Matter Exposure in Cars Is Associated with Cardiovascular Effects in Healthy Young Men. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 934-940.	2.5	392
2	In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. Journal of Aerosol Science, 2011, 42, 668-692.	1.8	264
3	Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine, 2013, 8, 449-467.	1.7	206
4	The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. Journal of Nanobiotechnology, 2015, 13, 1.	4.2	185
5	Exposure to Particulate Matter, Volatile Organic Compounds, and Other Air Pollutants Inside Patrol Cars. Environmental Science & Technology, 2003, 37, 2084-2093.	4.6	176
6	Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environmental Science & Technology, 2008, 42, 2253-2260.	4.6	176
7	Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?. Ecotoxicology, 2012, 21, 933-972.	1.1	175
8	Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). Journal of Nanoparticle Research, 2013, 15, 2101.	0.8	163
9	The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. Journal of the Air and Waste Management Association, 2013, 63, 136-149.	0.9	157
10	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology, 2011, 5, 1-11.	1.6	141
11	Toxic effects of brake wear particles on epithelial lung cells in vitro. Particle and Fibre Toxicology, 2009, 6, 30.	2.8	139
12	Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. Journal of the Royal Society Interface, 2010, 7, S27-40.	1.5	137
13	Particle toxicology and health - where are we?. Particle and Fibre Toxicology, 2019, 16, 19.	2.8	133
14	Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Particle and Fibre Toxicology, 2004, 1, 2.	2.8	126
15	Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environmental Science and Pollution Research, 2019, 26, 19697-19704.	2.7	123
16	Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes. Journal of Hazardous Materials, 2017, 322, 17-28.	6.5	108
17	Effects of particulate matter on inflammatory markers in the general adult population. Particle and Fibre Toxicology, 2012, 9, 24.	2.8	104
18	In vitro Assessment of the Pulmonary Toxicity and Gastric Availability of Lead-Rich Particles from a Lead Recycling Plant. Environmental Science & Technology, 2011, 45, 7888-7895.	4.6	86

#	Article	IF	CITATIONS
19	Estimation of Viral Aerosol Emissions From Simulated Individuals With Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Network Open, 2020, 3, e2013807.	2.8	85
20	Management of nanomaterials safety in research environment. Particle and Fibre Toxicology, 2010, 7, 40.	2.8	77
21	Cardiovascular Effects of Fine Particulate Matter Components in Highway Patrol Officers. Inhalation Toxicology, 2007, 19, 99-105.	0.8	70
22	Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. International Journal of Environmental Research and Public Health, 2015, 12, 8717-8743.	1.2	70
23	Short-Term Increase in Particulate Matter Blunts Nocturnal Blood Pressure Dipping and Daytime Urinary Sodium Excretion. Hypertension, 2012, 60, 1061-1069.	1.3	61
24	Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact, 2018, 10, 97-107.	2.4	59
25	Associations of Short-Term Particle and Noise Exposures with Markers of Cardiovascular and Respiratory Health among Highway Maintenance Workers. Environmental Health Perspectives, 2014, 122, 726-732.	2.8	58
26	Air pollutants enhance rhinoconjunctivitis symptoms in pollen-allergic individuals. Annals of Allergy, Asthma and Immunology, 2001, 87, 311-318.	0.5	57
27	Comparative Testing of a Miniature Diffusion Size Classifier to Assess Airborne Ultrafine Particles Under Field Conditions. Aerosol Science and Technology, 2013, 47, 22-28.	1.5	54
28	Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Particle and Fibre Toxicology, 2015, 13, 31.	2.8	54
29	Comparison of Three Acellular Tests for Assessing the Oxidation Potential of Nanomaterials. Aerosol Science and Technology, 2013, 47, 218-227.	1.5	52
30	Detecting the oxidative reactivity of nanoparticles: a new protocol for reducing artifacts. Journal of Nanoparticle Research, 2014, 16, 2493.	0.8	51
31	Residential exposure to drinking water arsenic in Inner Mongolia, China. Toxicology and Applied Pharmacology, 2007, 222, 351-356.	1.3	40
32	Development of a Control Banding Tool for Nanomaterials. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	40
33	Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers. Journal of Occupational Medicine and Toxicology, 2011, 6, 18.	0.9	39
34	Nanoparticle reactivity toward dithiothreitol. Nanotoxicology, 2008, 2, 121-129.	1.6	38
35	Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project. Nanotoxicology, 2015, 9, 5-12.	1.6	36
36	Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environmental Science & Technology, 2020, 54, 2389-2400.	4.6	36

#	Article	IF	CITATIONS
37	Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	35
38	Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders. Annals of Occupational Hygiene, 2016, 60, 205-219.	1.9	30
39	Benchmark of Nanoparticle Tracking Analysis on Measuring Nanoparticle Sizing and Concentration. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.8	30
40	Exhaled Breath Condensate pH Is Increased after Moderate Exercise. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2007, 20, 13-18.	1.2	29
41	Towards a Consensus View on Understanding Nanomaterials Hazards and Managing Exposure: Knowledge Gaps and Recommendations. Materials, 2013, 6, 1090-1117.	1.3	28
42	Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. Journal of Epidemiology and Community Health, 2018, 72, 148-153.	2.0	28
43	Nanoparticle Usage and Protection Measures in the Manufacturing Industry—A Representative Survey. Journal of Occupational and Environmental Hygiene, 2010, 7, 224-232.	0.4	27
44	Physico-Chemical Characterization and Oxidative Reactivity Evaluation of Aged Brake Wear Particles. Aerosol Science and Technology, 2015, 49, 65-74.	1.5	27
45	Physicochemical Characterization of Nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 43-51.	0.7	25
46	The importance of environmental exposures to physical, mental and social well-being. International Journal of Hygiene and Environmental Health, 2004, 207, 193-201.	2.1	23
47	Probing Functional Groups at the Gas–Aerosol Interface Using Heterogeneous Titration Reactions: A Tool for Predicting Aerosol Health Effects?. ChemPhysChem, 2010, 11, 3823-3835.	1.0	23
48	A Road Map Toward a Globally Harmonized Approach for Occupational Health Surveillance and Epidemiology in Nanomaterial Workers. Journal of Occupational and Environmental Medicine, 2012, 54, 1214-1223.	0.9	23
49	Differences in size selective aerosol sampling for pollen allergen detection using high-volume cascade impactors. Clinical and Experimental Allergy, 2000, 30, 867-873.	1.4	21
50	Oxidative Potential of Particles in Different Occupational Environments: A Pilot Study. Annals of Occupational Hygiene, 2015, 59, 882-894.	1.9	21
51	Contribution of fine particulate matter sources to indoor exposure in bars, restaurants, and cafes. Indoor Air, 2010, 20, 204-212.	2.0	20
52	Exhaled Breath Condensate as a Matrix for Combustion-Based Nanoparticle Exposure and Health Effect Evaluation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 449-458.	0.7	19
53	Low Exhaled Breath Droplet Formation May Explain Why Children are Poor SARS-CoV-2 Transmitters. Aerosol and Air Quality Research, 2020, 20, 1513-1515.	0.9	19
54	Short-term effects of particulate matters on pulse pressure in two general population studies. Journal of Hypertension, 2015, 33, 1144-1152.	0.3	18

#	Article	IF	CITATIONS
55	Characterisation of nanoparticles resulting from different braking behaviours. International Journal of Biomedical Nanoscience and Nanotechnology, 2010, 1, 17.	0.1	17
56	Simulation of SARS-CoV-2 Aerosol Emissions in the Infected Population and Resulting Airborne Exposures in Different Indoor Scenarios. Aerosol and Air Quality Research, 2021, 21, 200531.	0.9	17
57	Absorbance enhancement in microplate wells for improved-sensitivity biosensors. Biosensors and Bioelectronics, 2014, 56, 198-203.	5.3	15
58	Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes. Frontiers in Environmental Science, 2018, 6, .	1.5	14
59	Building expert consensus on problems of uncertainty and complexity in nanomaterial safety. Nanotechnology Perceptions, 2011, 7, 82-98.	0.1	14
60	Personal pollen exposure compared to stationary measurements. Journal of Investigational Allergology and Clinical Immunology, 2000, 10, 200-3.	0.6	14
61	Human inhalation exposure to iron oxide particles. BioNanoMaterials, 2013, 14, 5-23.	1.4	13
62	Determination of birch pollen allergens in different aerosol sizes. Aerobiologia, 2000, 16, 251-254.	0.7	12
63	Characterization of surface functional groups present on laboratory-generated and ambient aerosol particles by means of heterogeneous titration reactions. Journal of Aerosol Science, 2009, 40, 534-548.	1.8	12
64	Dustiness and Deagglomeration Testing: Interlaboratory Comparison of Systems for Nanoparticle Powders. Aerosol Science and Technology, 2015, 49, 1222-1231.	1.5	12
65	A system to assess the stability of airborne nanoparticle agglomerates under aerodynamic shear. Journal of Aerosol Science, 2015, 88, 98-108.	1.8	12
66	Nano-object Release During Machining of Polymer-Based Nanocomposites Depends on Process Factors and the Type of Nanofiller. Annals of Work Exposures and Health, 2017, 61, 1132-1144.	0.6	11
67	Occupational exposure to inhaled nanoparticles: Are young workers being left in the dust?. Journal of Occupational Health, 2019, 61, 333-338.	1.0	11
68	Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study. Nanomaterials, 2020, 10, 1430.	1.9	11
69	Deagglomeration testing of airborne nanoparticle agglomerates: Stability analysis under varied aerodynamic shear and relative humidity conditions. Aerosol Science and Technology, 2016, 50, 1253-1263.	1.5	10
70	From nano to micrometer size particles – A characterization of airborne cement particles during construction activities. Journal of Hazardous Materials, 2020, 398, 122838.	6.5	10
71	Exposure of Highway Maintenance Workers to Fine Particulate Matter and Noise. Annals of Occupational Hygiene, 2013, 57, 992-1004.	1.9	8
72	Sensitive Photonic System to Measure Oxidative Potential of Airborne Nanoparticles and ROS Levels in Exhaled Air. Procedia Engineering, 2015, 120, 632-636.	1.2	8

#	Article	IF	CITATIONS
73	Nano-safety research lessons for dealing with aerosol transmissions of COVID-19. Nanotoxicology, 2020, 14, 866-868.	1.6	8
74	Effect of the September 11, 2001 Terrorist Attack on a State Highway Patrol Trooper's Heart Rate Variability. Annals of Noninvasive Electrocardiology, 2005, 10, 83-85.	0.5	7
75	The multi-facets of sustainable nanotechnology – Lessons from a nanosafety symposium. Nanotoxicology, 2015, 9, 404-406.	1.6	7
76	Chronic exposure to metal fume PM2.5 on inflammation and stress hormone cortisol in shipyard workers: A repeat measurement study. Ecotoxicology and Environmental Safety, 2021, 215, 112144.	2.9	7
77	The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment. Handbook of Environmental Chemistry, 2015, , 209-231.	0.2	6
78	A method for the preservation and determination of welding fume nanoparticles in exhaled breath condensate. Environmental Science: Nano, 2016, 3, 357-364.	2.2	6
79	Towards health-based nano reference values (HNRVs) for occupational exposure: Recommendations from an expert panel. NanoImpact, 2022, 26, 100396.	2.4	6
80	Emission of Carbon Nanofiber (CNF) from CNF-Containing Composite Adsorbents. Journal of Occupational and Environmental Hygiene, 2012, 9, D130-D135.	0.4	5
81	A System to Create Stable Nanoparticle Aerosols from Nanopowders. Journal of Visualized Experiments, 2016, , .	0.2	4
82	Air–Liquid Interface Cell Exposures to Nanoparticle Aerosols. Methods in Molecular Biology, 2017, 1570, 301-313.	0.4	4
83	Coating aerosolized nanoparticles with low-volatile organic compound (LVOC) vapors modifies surface functionality and oxidative reactivity. NanoImpact, 2019, 14, 100150.	2.4	4
84	Characterization of nanoparticles in aerosolized photocatalytic and regular cement. Aerosol Science and Technology, 2019, 53, 540-548.	1.5	4
85	Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles. Journal of Physics: Conference Series, 2013, 429, 012023.	0.3	3
86	Airborne reactive oxygen species (ROS) is associated with nano TiO2 concentrations in aerosolized cement particles during simulated work activities. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
87	Chances and Risks of Nanomaterials for Health and Environment. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 128-133.	0.2	3
88	NanoSafe III: A User Friendly Safety Management System for Nanomaterials in Laboratories and Small Facilities. Nanomaterials, 2021, 11, 2768.	1.9	3
89	Coordination and Collaboration in European Research towards Healthy and Safe Nanomaterials. Journal of Physics: Conference Series, 2011, 304, 012001.	0.3	2
90	Research and development—where people are exposed to nanomaterials. Journal of Occupational Health, 2015, 57, 179-188.	1.0	2

6

#	Article	IF	CITATIONS
91	Nanopartikel am Arbeitsplatz. Atemwegs- Und Lungenkrankheiten, 2010, 36, 14-20.	0.0	2
92	Particle Exposure Scenarios for Research and Production Activities Involving Nanomaterials , 2009, ,		0
93	Differentiated Chemical Reactivity of Nanoparticles toward DTT , 2009, , .		Ο
94	Measurement Challenges For Powders With Large Nanoparticle Agglomerates. , 2010, , .		0
95	1765â€Seed safety and health when rushing to help. , 2018, , .		Ο