
Chiara Baldacchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4918071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One drop only. Easy and rapid Raman evaluation of β-carotene in olive oil and its relevance as an index of olive fly attack. Food Chemistry, 2022, 393, 133340.	4.2	4
2	Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environmental Science & Technology, 2021, 55, 6613-6622.	4.6	35
3	The use of a commercial ESI Z-spray source for ambient ion soft landing and microdroplet reactivity experiments. International Journal of Mass Spectrometry, 2021, 468, 116658.	0.7	9
4	Similarities and differences of potentially toxic elements contents in leaves of Fraxinus excelsior L. and Platanus orientalis L. in an urban environment. Urban Forestry and Urban Greening, 2021, 65, 127359.	2.3	1
5	Nature-Based Solutions as Tools for Monitoring the Abiotic and Biotic Factors in Urban Ecosystems. Future City, 2021, , 131-150.	0.2	2
6	Revealing Soil and Tree Leaves Deposited Particulate Matter PTE Relationship and Potential Sources in Urban Environment. International Journal of Environmental Research and Public Health, 2021, 18, 10412.	1.2	4
7	A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment. Sensors, 2020, 20, 6364.	2.1	18
8	Innovative Characterization of Particulate Matter Deposited on Urban Vegetation Leaves through the Application of a Chemical Fractionation Procedure. International Journal of Environmental Research and Public Health, 2020, 17, 5717.	1.2	10
9	Nanogap Sensors Decorated with SnO ₂ Nanoparticles Enable Low-Temperature Detection of Volatile Organic Compounds. ACS Applied Nano Materials, 2020, 3, 3337-3346.	2.4	13
10	Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of the Total Environment, 2020, 718, 137310.	3.9	89
11	Portable Immunosensor Based on Extended Gate—Field Effect Transistor for Rapid, Sensitive Detection of Cancer Markers. Proceedings (mdpi), 2019, 15, .	0.2	1
12	Combining analysis of fatty acid composition and l´13C in extra-virgin olive oils as affected by harvest period and cultivar: Possible use in traceability studies. Food Control, 2019, 105, 151-158.	2.8	10
13	An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environmental Science and Pollution Research, 2019, 26, 18719-18729.	2.7	28
14	Cultivar discrimination, fatty acid profile and carotenoid characterization of monovarietal olive oils by Raman spectroscopy at a single glance. Food Control, 2019, 96, 137-145.	2.8	24
15	How Does the Amount and Composition of PM Deposited on <i>Platanus acerifolia</i> Leaves Change Across Different Cities in Europe?. Environmental Science & Technology, 2017, 51, 1147-1156.	4.6	55
16	Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. Langmuir, 2017, 33, 9190-9200.	1.6	5
17	Vibrational Changes Induced by Electron Transfer in Surface Bound Azurin Metalloprotein Studied by Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy. ACS Nano, 2017, 11, 12824-12831.	7.3	25
18	Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis. Food Chemistry, 2017, 215, 1-6.	4.2	50

CHIARA BALDACCHINI

#	Article	IF	CITATIONS
19	Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. European Polymer Journal, 2016, 83, 407-427.	2.6	32
20	Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Science of the Total Environment, 2016, 548-549, 91-99.	3.9	47
21	Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses. Applied Physics Letters, 2015, 106, 183701.	1.5	15
22	Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin. Applied Physics Letters, 2014, 104, 093702.	1.5	10
23	Conductive atomic force microscopy study of single molecule electron transport through the Azurin-gold nanoparticle system. Applied Physics Letters, 2013, 102, 203704.	1.5	14
24	Chemically Modified Multiwalled Carbon Nanotubes Electrodes with Ferrocene Derivatives through Reactive Landing. Journal of Physical Chemistry C, 2011, 115, 4863-4871.	1.5	23
25	Highly Conductive Redox Protein–Carbon Nanotube Complex for Biosensing Applications. Advanced Functional Materials, 2011, 21, 153-157.	7.8	15
26	Lying-Down Metallic Single-Walled Carbon Nanotubes as Efficient Linkers for Metalloprotein-Based Nanodevices. Journal of Nanoscience and Nanotechnology, 2010, 10, 2753-2758.	0.9	4
27	Molecular charge distribution and dispersion of electronic states in the contact layer between pentacene and Cu(119) and beyond. Physical Review B, 2008, 77, .	1.1	16
28	Yeast cytochrome c integrated with electronic elements: a nanoscopic and spectroscopic study down to single-molecule level. Journal of Physics Condensed Matter, 2007, 19, 225009.	0.7	14
29	Conductive atomic force microscopy investigation of transverse current across metallic and semiconducting single-walled carbon nanotubes. Applied Physics Letters, 2007, 91, 122103.	1.5	14
30	Mixing of Electronic States in Pentacene Adsorption on Copper. Physical Review Letters, 2007, 99, 046802.	2.9	132
31	Symmetry lowering of pentacene molecular states interacting with a Cu surface. Physical Review B, 2007, 76, .	1.1	26
32	Molecule–metal interaction of pentacene on copper vicinal surfaces. Surface Science, 2007, 601, 2603-2606.	0.8	37
33	Self organization of pentacene grown on Cu(119). Surface Science, 2007, 601, 4242-4245.	0.8	31
34	Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces. Applied Physics Letters, 2006, 89, 152119.	1.5	30
35	Adsorption of pentacene on filled d-band metal surfaces: Long-range ordering and adsorption energy. Journal of Chemical Physics, 2006, 124, 154702.	1.2	38
36	Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory. Journal of Chemical Physics, 2005, 122, 124305.	1.2	83

#	Article	IF	CITATIONS
37	Au(110) induced reconstruction by π conjugated molecules adsorption investigated by photoemission spectroscopy and low energy electron diffraction. Surface Science, 2004, 566-568, 79-83.	0.8	27
38	Surface-science approach to the study of mercaptobenzoxazole on Cu(100). Surface Science, 2004, 566-568, 579-584.	0.8	3
39	Electronic structure of long-range ordered pentacene structures on the stepped Cu(119) surface. Surface Science, 2004, 566-568, 613-617.	0.8	18
40	Cu(100) surface:â€,â€,High-resolution experimental and theoretical band mapping. Physical Review B, 2003, 68, .	1.1	37
41	Electronic band states of long-range ordered aromatic thione molecules assembled on Cu(100). Physical Review B, 2002, 66, .	1.1	28
42	Growth of 2-mercaptobenzoxazole on Cu() surface: chemisorbed and physisorbed phases. Surface Science, 2002, 507-510, 7-11.	0.8	15