
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4917545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The investigation of 10Sc1CeSZ structure transformation and ionic conductivity. Materials Today: Proceedings, 2022, 50, 487-491.	1.8	7
2	Size- and position-controlled Ge nanocrystals separated by high-k dielectrics. MRS Bulletin, 2022, 47, 773-782.	3.5	2
3	Evolution of Morphology, Structure and Emission in Si-rich HfO2:Nd films with Annealing Times. Journal of Physics: Conference Series, 2021, 1723, 012044.	0.4	0
4	Annealing Impact on the Evolution of Crystalline Phases and Emission in Si-Rich HfO2:Nd Films Obtained By Magnetron Sputtering. ECS Meeting Abstracts, 2021, MA2021-01, 848-848.	0.0	0
5	Structure and Emission Evolution in Si-Rich HfO2:Pr Films Versus Annealing Temperature. ECS Meeting Abstracts, 2021, MA2021-01, 849-849.	0.0	0
6	Raman scattering, emission and crystalline phase evolutions in Nd-doped Si-rich HfO2:N films. Journal of Materials Science: Materials in Electronics, 2021, 32, 17473-17481.	2.2	4
7	Optical and structural properties of Mn-doped magnesium titanates fabricated with excess MgO. Materials Today Communications, 2021, 27, 102373.	1.9	7
8	Correlation of luminescence measurements to the structural characterization of Pr3+-doped HfSiOx. Journal of Luminescence, 2021, 235, 118004.	3.1	2
9	Influence of post annealing treatments on the luminescence of rare earth ions in ZnO:Tb,Eu/Si heterojunction. Applied Surface Science, 2021, 556, 149754.	6.1	16
10	Transformations in the photoluminescent, electrical and structural properties of Tb3+ and Eu3+ co-doped ZnO films under high-temperature annealing. Journal of Luminescence, 2020, 217, 116739.	3.1	9
11	Light Emission in Nd Doped Si-Rich HfO2 Films Prepared by Magnetron Sputtering. Journal of Electronic Materials, 2020, 49, 3441-3449.	2.2	6
12	Thermally induced evolution of optical and structural properties of Er2O3 films grown on Si substrates by thermal atomic layer deposition. Materials Letters, 2020, 263, 127216.	2.6	4
13	Spectroscopic characterization of phase transformation in Ge-rich Al2O3 films grown by magnetron co-sputtering. Materials Letters, 2020, 277, 128306.	2.6	3
14	Whether Ge-Rich ZrO2 and Ge-Rich HfO2 Materials Have Similar Reaction on Annealing Treatment?. ECS Transactions, 2020, 97, 49-60.	0.5	0
15	Thermally Stimulated Evolution of Optical and Structural Properties of Germanium-Doped Alumina Films. ECS Transactions, 2020, 97, 81-90.	0.5	3
16	Optical, structural and electrical characterization of pure ZnO films grown on p-type Si substrates by radiofrequency magnetron sputtering in different atmospheres. Semiconductor Science and Technology, 2020, 35, 095034.	2.0	6
17	Redistribution of Tb and Eu ions in ZnO films grown on different substrates under thermal annealing and its impact on Tb-Eu energy transfer. Applied Surface Science, 2020, 528, 146913.	6.1	11
18	Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2020, 31, 4587-4594.	2.2	10

#	Article	IF	CITATIONS
19	New Paramagnetic Center in Cu-Doped Y-Stabilized ZrO2. ECS Journal of Solid State Science and Technology, 2020, 9, 033002.	1.8	0
20	CO–PROX reactions on copper Y2O3-ZrO2 catalysts prepared by a single step co-precipitation technique. Applied Catalysis B: Environmental, 2020, 278, 119258.	20.2	16
21	The role of excess MgO in the intensity increase of red emission of Mn4+-activated Mg2TiO4 phosphors. Journal of Materials Science: Materials in Electronics, 2020, 31, 7555-7564.	2.2	4
22	Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures. Journal of Materials Science: Materials in Electronics, 2020, 31, 7539-7546.	2.2	4
23	Whether Ge-Rich ZrO2 and Ge-Rich HfO2 Materials Have Similar Reaction on Annealing Treatment?. ECS Meeting Abstracts, 2020, MA2020-01, 1027-1027.	0.0	0
24	Thermally Stimulated Evolution of Optical and Structural Properties of Germanium-Doped Alumina Films. ECS Meeting Abstracts, 2020, MA2020-01, 1091-1091.	0.0	0
25	(Invited) Luminescence of Rare Earth Doped Si Based Nanofilms for LED and Photovoltaic Applications. ECS Meeting Abstracts, 2020, MA2020-01, 1064-1064.	0.0	0
26	(Invited) Rare Earth Doped Layers Fabricated By Atomic Layer Deposition. ECS Meeting Abstracts, 2020, MA2020-01, 1066-1066.	0.0	0
27	Phonon-Polariton Excitations in MgZnO/6H-SiC Structures. Ukrainian Journal of Physics, 2020, 65, 162.	0.2	1
28	The peculiarities of light absorption and light emission in Cu-doped Y-stabilized ZrO2 nanopowders. Applied Nanoscience (Switzerland), 2019, 9, 965-973.	3.1	2
29	Influence of annealing on luminescence and energy transfer in ZnO multilayer structure co-doped with Tb and Eu. Thin Solid Films, 2019, 692, 137634.	1.8	5
30	Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content. Materials Today: Proceedings, 2019, 6, 79-85.	1.8	14
31	Investigation of undoped and Tb-doped ZnO films on Al2O3 substrate by infrared reflection method. Thin Solid Films, 2019, 673, 136-140.	1.8	9
32	Photoluminescence, conductivity and structural study of terbium doped ZnO films grown on different substrates. Materials Science in Semiconductor Processing, 2019, 94, 51-56.	4.0	12
33	Light emission and structure of Nd-doped Si-rich-HfO2 films prepared by magnetron sputtering in different atmospheres. Materials Chemistry and Physics, 2019, 229, 263-268.	4.0	6
34	Phase transformation and light emission in Er-doped Si-rich HfO2 films prepared by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 031503.	2.1	5
35	Thermal Treatments and Photoluminescence Properties of ZnO and ZnO:Yb Films Grown by Magnetron Sputtering. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800203.	1.8	7
36	The peculiarities of structural and optical properties of HfO2-based films co-doped with silicon and erbium. Applied Surface Science, 2019, 471, 521-527.	6.1	6

#	Article	IF	CITATIONS
37	Optical and Electrical Properties of Tb–ZnO/SiO2 Structure in the Infrared Spectral Interval. Ukrainian Journal of Physics, 2019, 64, 434.	0.2	5
38	Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy. Journal of Electronic Materials, 2018, 47, 3927-3933.	2.2	8
39	Effect of Li+ co-doping on structural and luminescence properties of Mn4+ activated magnesium titanate films. Journal of Materials Science: Materials in Electronics, 2018, 29, 15613-15620.	2.2	6
40	Origin of Pr ³⁺ luminescence in hafnium silicate films: combined atom probe tomography and TEM investigations. Nano Futures, 2018, 2, 035005.	2.2	9
41	The Effect of High Temperature Annealing on the Photoluminescence of ZnMgO Alloys. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800250.	1.8	6
42	Peculiarities of Thermally Activated Migration of Subvalent Impurities in Cu-Doped Y-Stabilized ZrO2 Nanopowders Produced From Zr Oxychlorides. Frontiers in Materials, 2018, 5, .	2.4	4
43	Solid State Nanocomposites and Hybrid Systems. , 2018, , 2-26.		Ο
44	Multifunctional Zirconia-based Nanocomposites. , 2018, , 28-57.		0
45	Solid State Composites and Multilayers Produced by Magnetron Sputtering. , 2018, , 152-185.		Ο
46	Emission Dependent on composition of Si-rich-SiNX Films obtained by PECVD. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012021.	0.6	2
47	Thermo-stimulated evolution of crystalline structure and dopant distribution in Cu-doped Y-stabilized ZrO ₂ nanopowders. Materials Research Express, 2017, 4, 035024.	1.6	12
48	Impurity-Governed Modification of Optical and Structural Properties of ZrO2-Based Composites Doped with Cu and Y. Nanoscale Research Letters, 2017, 12, 157.	5.7	12
49	Light emitting mechanisms in Siâ€rich SiN _x films with different silicon nitride stoichiometry. Physica Status Solidi (B): Basic Research, 2017, 254, 1600670.	1.5	5
50	Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures. Nanoscale Research Letters, 2017, 12, 196.	5.7	13
51	Optical and structural characterization of Ge clusters embedded in ZrO2. Applied Surface Science, 2017, 421, 283-288.	6.1	4
52	Optical properties of Zr and ZrO2. Applied Surface Science, 2017, 421, 744-747.	6.1	9
53	Emitting modification in Si-rich-SiNx films versus silicon nitride compositions. MRS Communications, 2017, 7, 280-285.	1.8	5
54	Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD. Journal of Materials Science: Materials in Electronics, 2017, 28, 6977-6981.	2.2	2

#	Article	IF	CITATIONS
55	Effect of Cooling Rate on Dopant Spatial Localization and Phase Transformation in Cuâ€Doped Yâ€&tabilized ZrO ₂ Nanopowders. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700183.	0.8	2
56	Optical, structural and electrical characterizations of stacked Hf-based and silicon nitride dielectrics. Thin Solid Films, 2016, 617, 143-149.	1.8	8
57	High-k MNOS-Like Stacked Dielectrics for Non-Volatile Memory Application. Journal of Nano Research, 2016, 39, 121-133.	0.8	Ο
58	Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science, 2016, 3, 508-524.	1.4	12
59	Silicon nanocrystals embedded in oxide films grown by magnetron sputtering. AIMS Materials Science, 2016, 3, 538-561.	1.4	5
60	Effect of Li-doping on Photoluminescence of Screen-printed Zinc Oxide Films. Materials Research Society Symposia Proceedings, 2015, 1766, 167-177.	0.1	2
61	Structural and Luminescent Properties of (Y,Cu)-Codoped Zirconia Nanopowders. ECS Journal of Solid State Science and Technology, 2015, 4, N103-N110.	1.8	10
62	Ag doped silicon nitride nanocomposites for embedded plasmonics. Applied Physics Letters, 2015, 107, .	3.3	18
63	Structural, electrical and luminescent properties of ZnO:Li films fabricated by screenâ€printing method on sapphire substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1144-1147.	0.8	5
64	Structural and light emitting properties of silicon-rich silicon nitride films grown by plasma enhanced-chemical vapor deposition. Materials Science in Semiconductor Processing, 2015, 37, 46-50.	4.0	13
65	Effect of Cu- and Y-Codoping on Structural and Luminescent Properties of Zirconia Based Nanopowders. ECS Transactions, 2015, 66, 313-319.	0.5	4
66	Effect of Rare-Earth Doping on Structural and Luminescent Properties of Screen-Printed ZnO Films. ECS Transactions, 2015, 66, 321-332.	0.5	3
67	Ge Nanostructures Embedded in ZrO ₂ Dielectric Films for Nonvolatile Memory Applications. ECS Transactions, 2015, 66, 203-212.	0.5	16
68	Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties. Thin Solid Films, 2015, 581, 65-69.	1.8	27
69	Role of paramagnetic defects in light emission processes in Y-doped ZrO2nanopowders. Materials Research Express, 2014, 1, 045011.	1.6	12
70	Preface of the "Symposium on theory, modeling, investigation and simulation of low-dimensional semiconductor systems". , 2014, , .		0
71	Analysis of carrier injection in Si nanoparticle-SiOx film based MOS devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 206-210.	0.8	0
72	Nanostructured Y-doped ZrO2 powder: peculiarities of light emission under electron beam excitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1417-1422.	0.8	9

#	Article	IF	CITATIONS
73	Structure and light emission of Si-rich Al2O3 and Si-rich-SiO2 nanocomposites. Microelectronic Engineering, 2014, 125, 62-67.	2.4	4
74	Low-Dimensional Semiconductor Structures – A part of the XXII International Material Research Congress (IMRC 2013). Physica B: Condensed Matter, 2014, 453, iii.	2.7	0
75	Analysis of PL spectrum shape of Si-based materials as a tool for determination of Si crystallites× ³ distribution. Physica B: Condensed Matter, 2014, 453, 19-25.	2.7	3
76	Spectroscopic and structural investigation of undoped and Er3+ doped hafnium silicate layers. Physica B: Condensed Matter, 2014, 453, 100-106.	2.7	18
77	Undoped and Nd ³⁺ doped Si-based single layers and superlattices for photonic applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1532-1543.	1.8	8
78	Si-rich Al2O3 films grown by RF magnetron sputtering: structural and photoluminescence properties versus annealing treatment. Nanoscale Research Letters, 2013, 8, 273.	5.7	10
79	Microstructure and optical properties of Pr3+-doped hafnium silicate films. Nanoscale Research Letters, 2013, 8, 43.	5.7	20
80	Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica. Nanoscale Research Letters, 2013, 8, 39.	5.7	34
81	Guided photoluminescence study of Nd-doped silicon rich silicon oxide and silicon rich silicon nich silicon nitride waveguides. Journal of Applied Physics, 2013, 114, .	2.5	11
82	The influence of annealing on structural and photoluminescence properties of silicon-rich Al2O3 films prepared by co-sputtering. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 51, 115-119.	2.7	10
83	Charge Trapping in Hafnium Silicate Films with Modulated Composition and Enhanced Permittivity. Advanced Materials Research, 2013, 854, 125-133.	0.3	1
84	Light-Emitting and Structural Properties of Si-rich HfO2 Thin Films Fabricated by RF Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2013, 1617, 85-91.	0.1	3
85	Memory effect in nanostructured Si-rich hafnia films. Materials Research Society Symposia Proceedings, 2013, 1617, 69-74.	0.1	0
86	Interrelation between Light Emitting and Structural Properties of Si Nanoclusters Embedded in SiO2 and Al2O3 Hosts. Materials Research Society Symposia Proceedings, 2013, 1617, 75-80.	0.1	2
87	Ge-Doped Hafnia-Based Dielectrics for Non-Volatile Memory Applications. ECS Transactions, 2012, 45, 331-344.	0.5	4
88	Hafnia-Based Luminescent Insulator for Phosphor Applications. ECS Transactions, 2012, 45, 119-128.	0.5	13
89	Effect of annealing treatment on Nd-SiO x thin film properties. Proceedings of SPIE, 2012, , .	0.8	1
90	Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-κ silicates. Journal of Applied Physics, 2012, 111, 103519.	2.5	12

LARYSA KHOMENKOVA

#	Article	IF	CITATIONS
91	Effect of the Si excess on the structure and the optical properties of Nd-doped Si-rich silicon oxide. Journal of Luminescence, 2012, 132, 3118-3121.	3.1	12
92	Atomic scale microstructures of high-k HfSiO thin films fabricated by magnetron sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 717-720.	3.5	9
93	Silicon-rich oxynitride hosts for 1.5μm Er3+ emission fabricated by reactive and standard RF magnetron sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 725-728.	3.5	14
94	SiO x /SiN y multilayers for photovoltaic and photonic applications. Nanoscale Research Letters, 2012, 7, 124.	5.7	12
95	Hafnium silicate dielectrics fabricated by RF magnetron sputtering. Journal of Non-Crystalline Solids, 2011, 357, 1860-1865.	3.1	9
96	Hf-based high-k materials for Si nanocrystal floating gate memories. Nanoscale Research Letters, 2011, 6, 172.	5.7	32
97	Silicon Nanoclusters Embedded into Oxide Host for Non-Volatile Memory Applications. ECS Transactions, 2011, 35, 37-45.	0.5	2
98	Cathodoluminescence andÂphotoluminescence comparative study of erbium-doped silicon-rich silicon oxide. Journal of Nanophotonics, 2011, 5, 051504.	1.0	12
99	The nature of emission of porous silicon produced by chemical etching. Semiconductors, 2010, 44, 79-83.	0.5	11
100	Study of the layer-substrate interface in nc-Si-SiO2-p-Si structures with silicon quantum dots by the method of temperature dependences of photovoltage. Semiconductors, 2010, 44, 1187-1191.	0.5	0
101	The peculiarities of Si/SiO2 interfaces in the Si–SiO2 systems with Si nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 97-101.	3.5	3
102	Efficient energy transfer from Si-nanoclusters to Er ions in silica induced by substrate heating during deposition. Journal of Applied Physics, 2010, 108, .	2.5	19
103	Optical and structural properties of SiO 2 co-doped with Si-nc and Er3+ions. , 2010, , .		1
104	Thermal stability of high- <i>k</i> Si-rich HfO ₂ layers grown by RF magnetron sputtering. Nanotechnology, 2010, 21, 285707.	2.6	30
105	High- <i>k</i> Hf-based layers grown by RF magnetron sputtering. Nanotechnology, 2010, 21, 095704.	2.6	23
106	Towards an optimum coupling between Er ions and Si-based sensitizers for integrated active photonics. Journal of Applied Physics, 2009, 106, .	2.5	26
107	Optically active Er3+ ions in SiO2 codoped with Si nanoclusters. Journal of Applied Physics, 2009, 106, 093107.	2.5	16
108	Stable HfO2 based Layers Fabricated by RF Magnetron Sputtering. ECS Transactions, 2009, 25, 153-162.	0.5	0

#	Article	IF	CITATIONS
109	Structural and luminescent characteristics of macro porous silicon. Journal of Materials Science: Materials in Electronics, 2009, 20, 226-229 Si-rich- <mml:math <br="" alting='si1.gif"' display="inline" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"</mml:math>	2.2	4
110	xmlns:xbcs= http://www.elsevier.com/xml/xbcs/dtd "xmlns:xs= http://www.w3.org/2001/XMLSchema- xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd"	1.2	1
111	The structure of Sia€ SiO2 layers with high excess Si content prepared by magnetron sputtering. Thin Solid Films, 2009, 517, 5468-5473.	1.8	9
112	Long lifetime and efficient emission from Er3+ ions coupled to Si nanoclusters in Si-rich SiO2 layers. Journal of Luminescence, 2009, 129, 1519-1523.	3.1	7
113	Enhanced fraction of coupled Er in silicon-rich silicon oxide layers grown by magnetron co-sputtering. Journal of Luminescence, 2009, 129, 1886-1889.	3.1	2
114	Towards an enhanced coupling between the Er ions and Si nanoclusters. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1048-1051.	2.7	6
115	Assessment of the main material issues for achieving an Er coupled to silicon nanoclusters infrared amplifier. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1029-1033.	2.7	12
116	Structural and light emission properties of silicon-based nanostructures with high excess silicon content. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1015-1018.	2.7	5
117	Structural and optical characteristics of Er-doped SRSO layers deposited by the confocal sputtering technique. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1067-1070.	2.7	5
118	Rare-earth (Er, Nd)-doped Si nanostructures for integrated photonics. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1034-1039.	2.7	5
119	Study of the electroluminescence at 1.5 μm of SiO <inf>x</inf> :Er layers made by reactive magnetron sputtering. , 2009, , .		Ο
120	HfO2-based Thin Films Deposited by RF Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2009, 1160, 1.	0.1	3
121	Size Dependent Photoluminescence of Si Nano-Crystals Embedded in Amorphous Silicon. Solid State Phenomena, 2008, 131-133, 71-76.	0.3	4
122	Correlation between the photoluminescence and different types of Si nano-clusters in amorphous silicon. Journal of Non-Crystalline Solids, 2008, 354, 2186-2189.	3.1	11
123	Er ³⁺ coupled to Si nanoclusters rib waveguides. , 2008, , .		0
124	Further improvements in Er3+coupled to Si nanoclusters rib waveguides. , 2008, , .		10
125	Structure and Optical Properties of Magnetron Sputtered SiO _x Layers with Silicon Nanoparticles. Defect and Diffusion Forum, 2008, 272, 87-98.	0.4	3
126	Chemical composition and light emission properties of Si-rich-SiOx layers prepared by magnetron sputtering. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2008, 10, 21-25.	1.0	2

#	Article	IF	CITATIONS
127	Emission and structure investigations of Si nano-crystals embedded in amorphous silicon. Journal of Physics: Conference Series, 2007, 61, 1231-1235.	0.4	12
128	Effect of Various Treatments on Light Emission Properties of Si-Rich-SiO _x Structures. Solid State Phenomena, 2007, 131-133, 65-70.	0.3	1
129	ZnO Nanostructured Microspheres and Elongated Structures Grown by Thermal Treatment of ZnS Powder. Crystal Growth and Design, 2007, 7, 836-839.	3.0	27
130	Depth redistribution of components of SiOx layers prepared by magnetron sputtering in the process of their decomposition. Thin Solid Films, 2007, 515, 6749-6753.	1.8	9
131	Growth peculiarities of silicon nanoparticles in an oxide matrix prepared by magnetron sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3061-3065.	0.8	4
132	Photoluminescence and structure investigations of Si nano-crystals in amorphous silicon matrix. Journal of Non-Crystalline Solids, 2006, 352, 1188-1191.	3.1	6
133	The effect of oxidation on the efficiency and spectrum of photoluminescence of porous silicon. Semiconductors, 2006, 40, 598-604.	0.5	11
134	Raman scattering characterization of macro- and nanoporous silicon. Applied Surface Science, 2005, 243, 30-35.	6.1	15
135	Radiative channel competition in silicon nanocrystallites. Journal of Luminescence, 2005, 115, 117-121.	3.1	27
136	Defect and nano-crystallite photoluminescence in Si-SiOx systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2990-2993.	0.8	2
137	Magnetic field effect on the visible photoluminescence of porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3314-3318.	0.8	4
138	Stability of Emission Properties of Silicon Nanostructures. Solid State Phenomena, 2005, 108-109, 59-64.	0.3	3
139	Investigation of aging process of Si–SiOx structures with silicon quantum dots. Journal of Applied Physics, 2005, 98, 113515.	2.5	8
140	Si Wire Light Emission Changes During Si/SiOx Interface Formation. Materials Research Society Symposia Proceedings, 2004, 808, 215.	0.1	0
141	The influence of crystal imperfections on the shape of exciton emission spectrum in ZnO single crystals. EPJ Applied Physics, 2004, 27, 305-307.	0.7	17
142	Luminescence and EPR studies of defects in Si-SiO2films. EPJ Applied Physics, 2004, 27, 285-287.	0.7	11
143	Hot carriers and excitation of Si/SiOx interface defect photoluminescence in Si nanocrystallites. Physica B: Condensed Matter, 2003, 340-342, 1113-1118.	2.7	27
144	Nature of visible luminescence of co-sputtered Si–SiOx systems. Physica B: Condensed Matter, 2003, 340-342, 1119-1123.	2.7	13

LARYSA KHOMENKOVA

#	Article	IF	CITATIONS
145	Mechanism of photoexcitation of oxide-related emission bands in Si–SiO2 systems. Materials Science and Engineering C, 2003, 23, 691-696.	7.3	9
146	Formation of Si/SiOx interface and its influence on photoluminescence of Si nano-crystallites. Microelectronics Journal, 2003, 34, 759-761.	2.0	2
147	Nature of visible luminescence and its excitation in Si–SiO systems. Journal of Luminescence, 2003, 102-103, 705-711.	3.1	46
148	Ballistic effect and photoluminescence excitation in porous silicon. Surface Science, 2003, 532-535, 1204-1208.	1.9	5
149	Photoluminescence and its excitation mechanisms in Si wires and dots. Physica Status Solidi A, 2003, 197, 382-387.	1.7	2
150	The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence, 2003, 102-103, 733-736.	3.1	129
151	USXES AND OPTICAL PHENOMENA IN SI LOW-DIMENSIONAL STRUCTURES DEPENDENT ON MORPHOLOGY AND SILICON OXIDE COMPOSITION ON SI SURFACE. Surface Review and Letters, 2002, 09, 1047-1052.	1.1	11
152	Ballistic effect in red photoluminescence of Si wires. Physical Review B, 2002, 65, .	3.2	37
153	Defect-related luminescence of Si/SiO2layers. Journal of Physics Condensed Matter, 2002, 14, 13217-13221.	1.8	30
154	Some Peculiarities of Impurity Diffusion in CdS Crystals. Physica Status Solidi (B): Basic Research, 2002, 229, 269-273.	1.5	5
155	The interrelation of surface relief of porous silicon with specific features of Raman spectra. Semiconductors, 2002, 36, 558-563.	0.5	4
156	The role of oxidation on porous silicon photoluminescence and its excitation. Thin Solid Films, 2001, 381, 88-93.	1.8	48
157	Investigation of lattice defects by means of their drift under electric field. Physica B: Condensed Matter, 2001, 308-310, 967-970.	2.7	5
158	Effect of adsorption and desorption processes on photoluminescence excitation spectra of porous silicon. Applied Surface Science, 2000, 166, 349-353.	6.1	7
159	Three approaches to surface substance role investigation in porous silicon photoluminescence and its excitation. Journal of Physics and Chemistry of Solids, 2000, 61, 937-941.	4.0	32
160	Complex nature of the red photoluminescence band and peculiarities of its excitation in porous silicon. Applied Surface Science, 2000, 167, 197-204.	6.1	28
161	Suboxide-related centre as the source of the intense red luminescence of porous Si. Microelectronic Engineering, 2000, 51-52, 485-493.	2.4	17
162	<title>Role of surface substances in excitation of porous silicon photoluminescence</title> . , 1999, , .		0

10

LARYSA KHOMENKOVA

#	Article	IF	CITATIONS
163	Two ways of porous Si photoluminescence excitation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 51, 162-165.	3.5	11
164	Several Ways of Excitation and Degradation Processes of Porous Silicon Photoluminescence. , 1998, , 305-309.		0
165	Two sources of excitation of photoluminescence of porous silicon. Semiconductors, 1997, 31, 773-776.	0.5	9
166	Photoluminescence and EPR studies of porous silicon. Journal of Luminescence, 1997, 72-74, 400-402.	3.1	10
167	Complex studies of porous silicon aging phenomena. , 0, , .		1
168	Oxidation process effects on porous silicon photoluminescence. , 0, , .		1
169	The nature of photoluminescence excitation bands in porous silicon. , 0, , .		0
170	Nature of the red photoluminescence in porous silicon. , 0, , .		0
171	The influence of defect diffusion under electric field on optical and luminescent characteristics of cadmium sulphide. , 0, , .		0
172	Temperature effect on photoluminescence excitation process of porous silicon. , 0, , .		0
173	Peculiarities of Raman spectra from porous silicon. , 0, , .		0
174	Structure and Optical Properties of Magnetron-Sputtered SiO _x Layers with Silicon Nanoparticles. Defect and Diffusion Forum, 0, 303-304, 7-19.	0.4	0
175	Comparative Investigation of Structural and Optical Properties of Si-Rich Oxide Films Fabricated by Magnetron Sputtering. Advanced Materials Research, 0, 854, 117-124.	0.3	2