Martin C Sadowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4917322/publications.pdf

Version: 2024-02-01

39 papers 1,934 citations

304743 22 h-index 289244 40 g-index

44 all docs 44 docs citations

44 times ranked 3303 citing authors

#	Article	IF	Citations
1	Aquaporin 9 induction in human iPSCâ€derived hepatocytes facilitates modeling of ornithine transcarbamylase deficiency. Hepatology, 2022, 76, 646-659.	7.3	12
2	Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death and Disease, 2022, 13, 448.	6.3	22
3	Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. Journal of Lipid Research, 2022, 63, 100223.	4.2	10
4	Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Reports, 2021, 34, 108738.	6.4	68
5	Leptin antagonism inhibits prostate cancer xenograft growth and progression. Endocrine-Related Cancer, 2021, 28, 353-375.	3.1	6
6	Isomer-Resolved Imaging of Prostate Cancer Tissues Reveals Specific Lipid Unsaturation Profiles Associated With Lymphocytes and Abnormal Prostate Epithelia. Frontiers in Endocrinology, 2021, 12, 689600.	3.5	15
7	Synthesis of a Unique Psammaplysin F Library and Functional Evaluation in Prostate Cancer Cells by Multiparametric Quantitative Single Cell Imaging. Journal of Natural Products, 2020, 83, 2357-2366.	3.0	13
8	Fatty Acid Oxidation Is an Adaptive Survival Pathway Induced in Prostate Tumors by HSP90 Inhibition. Molecular Cancer Research, 2020, 18, 1500-1511.	3.4	13
9	Therapy-induced lipid uptake and remodeling underpin ferroptosis hypersensitivity in prostate cancer. Cancer & Metabolism, 2020, 8, 11.	5.0	63
10	Adiponectin receptor activation inhibits prostate cancer xenograft growth. Endocrine-Related Cancer, 2020, 27, 711-729.	3.1	12
11	Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis. Molecular Cancer Research, 2019, 17, 1166-1179.	3.4	51
12	A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene, 2019, 38, 913-934.	5.9	76
13	Identification of Gibberellic Acid Derivatives That Deregulate Cholesterol Metabolism in Prostate Cancer Cells. Journal of Natural Products, 2018, 81, 838-845.	3.0	8
14	Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion. Scientific Reports, 2018, 8, 2090.	3.3	31
15	Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle, 2018, 17, 652-668.	2.6	13
16	6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 3-15.	4.1	20
17	Bioactive Dihydro- \hat{l}^2 -agarofuran Sesquiterpenoids from the Australian Rainforest Plant <i>Maytenus bilocularis</i> . Journal of Natural Products, 2016, 79, 1445-1453.	3.0	33
18	Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.	4.5	275

#	Article	IF	CITATIONS
19	Advances in hormonal therapies for hormone $na\tilde{A}^-$ ve and castration-resistant prostate cancers with or without previous chemotherapy. Experimental Hematology and Oncology, 2015, 5, 15.	5.0	10
20	The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget, 2015, 6, 43944-43963.	1.8	16
21	Denhaminols A–H, Dihydro-β-agarofurans from the Endemic Australian Rainforest Plant <i>Denhamia celastroides</i>). Journal of Natural Products, 2015, 78, 111-119.	3.0	21
22	Design and Synthesis of a Screening Library Using the Natural Product Scaffold 3-Chloro-4-hydroxyphenylacetic Acid. Journal of Natural Products, 2015, 78, 914-918.	3.0	10
23	Cytotoxic C ₂₀ Diterpenoid Alkaloids from the Australian Endemic Rainforest Plant <i>Anopterus macleayanus</i> Journal of Natural Products, 2015, 78, 2908-2916.	3.0	24
24	Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior. PLoS ONE, 2014, 9, e112122.	2.5	72
25	Identification of Eusynstyelamide B as a Potent Cell Cycle Inhibitor Following the Generation and Screening of an Ascidian-Derived Extract Library Using a Real Time Cell Analyzer. Marine Drugs, 2014, 12, 5222-5239.	4.6	18
26	Isolation, structure determination and cytotoxicity studies of tryptophan alkaloids from an Australian marine sponge Hyrtios sp Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3329-3332.	2.2	24
27	The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5, 9362-9381.	1.8	111
28	Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life, 2012, 64, 136-142.	3.4	144
29	Phenotypic Characterization of Prostate Cancer LNCaP Cells Cultured within a Bioengineered Microenvironment. PLoS ONE, 2012, 7, e40217.	2.5	75
30	Cyclin-dependent Kinase-mediated Phosphorylation of RBP1 and pRb Promotes Their Dissociation to Mediate Release of the SAP30·mSin3·HDAC Transcriptional Repressor Complex. Journal of Biological Chemistry, 2011, 286, 5108-5118.	3.4	26
31	Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Division, 2010, 5, 19.	2.4	97
32	Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34. Molecular and Cellular Biology, 2010, 30, 2316-2329.	2.3	45
33	Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience Reports, 2010, 30, 243-255.	2.4	114
34	Geminin and Brahma act antagonistically to regulate EGFR–Ras–MAPK signaling in Drosophila. Developmental Biology, 2010, 344, 36-51.	2.0	15
35	Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression. Biochemical Journal, 2007, 405, 569-581.	3.7	43
36	Independent functions of yeast Pcf11p in pre-mRNA 3' end processing and in transcription termination. EMBO Journal, 2003, 22, 2167-2177.	7.8	117

#	Article	IF	CITATIONS
37	The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3'-end formation. Nucleic Acids Research, 2003, 31, 3936-3945.	14.5	58
38	Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO Journal, 2002, 21, 4125-4135.	7.8	113
39	The Saccharomyces cerevisiae RNA-binding Protein Rbp29 Functions in Cytoplasmic mRNA Metabolism. Journal of Biological Chemistry, 2000, 275, 21817-21826.	3.4	33