
Maryam Naebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4917208/publications.pdf Version: 2024-02-01

MADVAM NAERE

#	Article	IF	CITATIONS
1	Plasma-Assisted Antimicrobial Finishing of Textiles: A Review. Engineering, 2022, 12, 145-163.	3.2	45
2	Sustainable biodegradable denim waste composites for potential single-use packaging. Science of the Total Environment, 2022, 809, 152239.	3.9	8
3	Comparative Preparation Method and Associated Cost of Lignin–Cellulose Nanocrystals. Nanomaterials, 2022, 12, 1320.	1.9	8
4	Thermally stable micro-sized silica-modified wool powder from one-step alkaline treatment. Powder Technology, 2022, 404, 117517.	2.1	7
5	Utilisation of natural wastes: Water-resistant semi-transparent paper for food packaging. Journal of Cleaner Production, 2022, 364, 132665.	4.6	16
6	A review on cotton gin trash: Sustainable commodity for material fabrication. Journal of Cleaner Production, 2021, 281, 125300.	4.6	15
7	Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Materials, 2021, 14, 1241.	1.3	28
8	Graphene oxide incorporated waste wool/PAN hybrid fibres. Scientific Reports, 2021, 11, 12068.	1.6	17
9	Flexible water-resistant semi-transparent cotton gin trash/poly (vinyl alcohol) bio-plastic for packaging application: Effect of plasticisers on physicochemical properties. Journal of Cleaner Production, 2021, 303, 126983.	4.6	23
10	A Review on the Production Methods and Applications of Graphene-Based Materials. Nanomaterials, 2021, 11, 2414.	1.9	34
11	A Facile Approach of Fabricating Electrically Conductive Knitted Fabrics Using Graphene Oxide and Textile-Based Waste Material. Polymers, 2021, 13, 3003.	2.0	8
12	Lignin: A Review on Structure, Properties, and Applications as a Light-Colored UV Absorber. ACS Sustainable Chemistry and Engineering, 2021, 9, 1427-1442.	3.2	176
13	A review on lignocellulose/poly (vinyl alcohol) composites: cleaner approaches for greener materials. Cellulose, 2021, 28, 10741-10764.	2.4	21
14	Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies, 2021, 14, 6792.	1.6	32
15	Lignin–Cellulose Nanocrystals from Hemp Hurd as Light-Coloured Ultraviolet (UV) Functional Filler for Enhanced Performance of Polyvinyl Alcohol Nanocomposite Films. Nanomaterials, 2021, 11, 3425.	1.9	13
16	Investigation on structure and characteristics of alpacaâ€based wetâ€spun polyacrylonitrile composite fibers by utilizing natural textile waste. Journal of Applied Polymer Science, 2020, 137, 48370.	1.3	16
17	Physicochemical properties of film fabricated from cotton gin trash. Materials Chemistry and Physics, 2020, 239, 122009.	2.0	32
18	Electrically conductive honeycomb structured graphene composites from natural protein fibre waste. Materials Letters, 2020, 264, 127311.	1.3	11

MARYAM NAEBE

#	Article	IF	CITATIONS
19	Sorption properties of fabricated film from cotton gin trash. Materials Today: Proceedings, 2020, 31, S221-S226.	0.9	12
20	Mechanically milled powder from cotton gin trash for diverse applications. Powder Technology, 2020, 361, 679-686.	2.1	19
21	Biodegradable cotton gin trash/poly(vinyl alcohol) composite plastic: Effect of particle size on physicochemical properties. Powder Technology, 2020, 375, 1-10.	2.1	20
22	Adsorption of anionic Acid Blue 25 on chitosan-modified cotton gin trash film. Cellulose, 2020, 27, 9437-9456.	2.4	29
23	Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 2020, 10, 973.	1.2	104
24	Kinetics and equilibrium adsorption of methylene blue onto cotton gin trash bioadsorbents. Cellulose, 2020, 27, 6485-6504.	2.4	37
25	Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. Journal of Cleaner Production, 2020, 265, 121866.	4.6	203
26	Transparent Ultraviolet (UV)-Shielding Films Made from Waste Hemp Hurd and Polyvinyl Alcohol (PVA). Polymers, 2020, 12, 1190.	2.0	39
27	Impact of the wet spinning parameters on the alpacaâ€based polyacrylonitrile composite fibers: Morphology and enhanced mechanical properties study. Journal of Applied Polymer Science, 2020, 137, 49264.	1.3	19
28	Functional cotton fabric using hollow glass microspheres: Focus on thermal insulation, flame retardancy, UV-protection and acoustic performance. Progress in Organic Coatings, 2020, 141, 105553.	1.9	39
29	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289
30	Investigation of Heat Transfer Properties of Plasma-Treated and Silicone-Elastomer Coated Basalt Fabric. Coatings, 2019, 9, 292.	1.2	3
31	The use of micro-computed tomography to determine the fabric cross-sectional area and stress. Journal of the Textile Institute, 2019, 110, 1459-1467.	1.0	2
32	Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance. ACS Applied Materials & Interfaces, 2019, 11, 13039-13057.	4.0	128
33	Fabrication of a cost-effective lemongrass (<i>Cymbopogon citratus</i>) membrane with antibacterial activity for dye removal. RSC Advances, 2019, 9, 34076-34085.	1.7	31
34	Preparation and characterisation of mechanically milled particles from waste alpaca fibres. Powder Technology, 2019, 342, 848-855.	2.1	29
35	Thermal comfort properties of bifacial fabrics. Textile Reseach Journal, 2019, 89, 43-51.	1.1	6
36	Prickle discomfort assessment of commercial knitted wool garments. International Journal of Clothing Science and Technology, 2018, 30, 73-81.	0.5	1

Maryam Naebe

#	Article	IF	CITATIONS
37	The effect of plasma treatment and tightness factor on the low-stress mechanical properties of single jersey knitted wool fabrics. Textile Reseach Journal, 2018, 88, 499-509.	1.1	9
38	Determination of the porosity in a bifacial fabric using micro-computed tomography and three-dimensional reconstruction. Textile Reseach Journal, 2018, 88, 1263-1277.	1.1	12
39	Mechanical properties of bifacial fabrics. Textile Reseach Journal, 2018, 88, 1335-1344.	1.1	5
40	Determination of model parameters for predicting handle characteristics of wool-rich suiting woven fabrics based on the Wool HandleMeter and KES-F. Journal of the Textile Institute, 2018, 109, 147-159.	1.0	9
41	Lemongrass (Cymbopogon): a review on its structure, properties, applications and recent developments. Cellulose, 2018, 25, 5455-5477.	2.4	71
42	Moisture transfer properties of bifacial fabrics. Textile Reseach Journal, 2017, 87, 1096-1106.	1.1	18
43	Heat transfer properties of bifacial fabrics. Textile Reseach Journal, 2017, 87, 2307-2313.	1.1	5
44	Directional Trans-Planar and Different In-Plane Water Transfer Properties of Composite Structured Bifacial Fabrics Modified by a Facile Three-Step Plasma Treatment. Coatings, 2017, 7, 132.	1.2	10
45	Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment. Cellulose, 2016, 23, 2129-2142.	2.4	36
46	Fabric handle properties of superfine wool fabrics with different fibre curvature, cashmere content and knitting tightness. Journal of the Textile Institute, 2016, 107, 562-577.	1.0	13
47	Associations between the physiological basis of fabric-evoked prickle, fiber and yarn characteristics and the Wool ComfortMeter value. Textile Reseach Journal, 2015, 85, 1122-1130.	1.1	9
48	Relationships between wearer assessment and the instrumental measurement of the handle and prickle of knitted wool fabrics. Textile Reseach Journal, 2015, 85, 1140-1152.	1.1	15
49	Effect of yarn winding tension on the Wool ComfortMeter value when testing yarns. Textile Reseach Journal, 2015, 85, 1198-1206.	1.1	2
50	The effect of plasma treatment and loop length on the handle of lightweight jersey fabrics as assessed by the Wool HandleMeter. Textile Reseach Journal, 2015, 85, 1190-1197.	1.1	16
51	Effects of variation in wool fiber curvature and yarn hairiness on sensorial assessment of knitted fabrics. Textile Reseach Journal, 2015, 85, 1153-1166.	1.1	6
52	Relationships between sleeve trial and wearer trial assessment of discomfort and objective measurements. Textile Reseach Journal, 2015, 85, 272-280.	1.1	4
53	Effect of surface treatment and knit structure on comfort properties of wool fabrics. Journal of the Textile Institute, 2013, 104, 600-605.	1.0	21
54	The effect of humidity and temperature on Wool ComfortMeter assessment of single jersey wool fabrics. Textile Reseach Journal, 2013, 83, 83-89.	1.1	40

MARYAM NAEBE

#	Article	IF	CITATIONS
55	Predicting comfort properties of knitted fabrics by assessing yarns with the Wool ComfortMeter. Journal of the Textile Institute, 2013, 104, 628-633.	1.0	13
56	Assessment of performance properties of wetsuits. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2013, 227, 255-264.	0.4	10
57	Effect of fibre, yarn and knitted fabric attributes associated with wool comfort properties. Journal of the Textile Institute, 2013, 104, 606-617.	1.0	23
58	Relationship between wearer prickle response with fibre and garment properties and Wool ComfortMeter assessment. Journal of the Textile Institute, 2013, 104, 618-627.	1.0	24
59	Comfort properties of superfine wool and wool/cashmere blend yarns and fabrics. Journal of the Textile Institute, 2013, 104, 634-640.	1.0	17
60	Ageing effect of plasmaâ€treated wool. Journal of the Textile Institute, 2011, 102, 1086-1093.	1.0	24
61	Use of lowâ€level plasma for enhancing the shrink resistance of wool fabric treated with a silicone polymer. Journal of the Textile Institute, 2011, 102, 948-956.	1.0	29
62	Effect of Atmospheric Plasma Treatment on Pad-dyeing of Natural Dyes on Wool. Journal of Fiber Bioengineering and Informatics, 2011, 4, 267-276.	0.2	32