Isabelle Dusfour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4916696/publications.pdf

Version: 2024-02-01

68 papers

2,783 citations

218677 26 h-index 206112 48 g-index

74 all docs

74 docs citations

74 times ranked 3090 citing authors

#	Article	IF	CITATIONS
1	Biodiversity and vectorâ€borne diseases: Host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Molecular Ecology, 2023, 32, 1817-1831.	3.9	18
2	Discrimination of 15 Amazonian Anopheline Mosquito Species by Polymerase Chain Reaction—Restriction Fragment Length Polymorphism. Journal of Medical Entomology, 2022, , .	1.8	6
3	Interactions between vector competence to chikungunya virus and resistance to deltamethrin in <i>Aedes aegypti</i> laboratory lines?. Medical and Veterinary Entomology, 2022, 36, 486-495.	1.5	3
4	Natural Variation in Physicochemical Profiles and Bacterial Communities Associated with Aedes aegypti Breeding Sites and Larvae on Guadeloupe and French Guiana. Microbial Ecology, 2021, 81, 93-109.	2.8	28
5	CYP450 core involvement in multiple resistance strains of Aedes aegypti from French Guiana highlighted by proteomics, molecular and biochemical studies. PLoS ONE, 2021, 16, e0243992.	2.5	20
6	New records of California serogroup viruses in Aedes mosquitoes and first detection in simulioidae flies from Northern Canada and Alaska. Polar Biology, 2021, 44, 1911-1915.	1.2	3
7	Impact of selection regime and introgression on deltamethrin resistance in the arbovirus vector ⟨i>Aedes aegypti⟨ i> â€" a comparative study between contrasted situations in ⟨scp⟩New Caledonia⟨ scp⟩ and ⟨scp⟩French Guiana⟨ scp⟩. Pest Management Science, 2021, 77, 5589-5598.	3.4	4
8	Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. Infection, Genetics and Evolution, 2021, 93, 104916.	2.3	22
9	Spatiotemporal multiple insecticide resistance in Aedes aegypti populations in French Guiana: need for alternative vector control. Memorias Do Instituto Oswaldo Cruz, 2021, 115, e200313.	1.6	3
10	Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana. Acta Tropica, 2020, 201, 105179.	2.0	16
11	Combining genetic crosses and pool targeted DNAâ€seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito ⟨i⟩Aedes aegypti⟨/i⟩. Evolutionary Applications, 2020, 13, 303-317.	3.1	22
12	Paecilosetin Derivatives as Potent Antimicrobial Agents from <i>Isaria farinosa</i> Isaria farinosaIsaria	3.0	8
13	Enhanced Zika virus susceptibility of globally invasive <i>Aedes aegypti</i> populations. Science, 2020, 370, 991-996.	12.6	61
14	Identification of French Guiana anopheline mosquitoes by MALDI-TOF MS profiling using protein signatures from two body parts. PLoS ONE, 2020, 15, e0234098.	2.5	10
15	Resurgence risk for malaria, and the characterization of a recent outbreak in an Amazonian border area between French Guiana and Brazil. BMC Infectious Diseases, 2020, 20, 373.	2.9	17
16	Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases, 2019, 13, e0007615.	3.0	162
17	A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas. Viruses, 2019, 11, 904.	3.3	16
18	Characterization, Diversity, and Structure-Activity Relationship Study of Lipoamino Acids from Pantoea sp. and Synthetic Analogues. International Journal of Molecular Sciences, 2019, 20, 1083.	4.1	7

#	Article	lF	CITATIONS
19	Liaisons dangereuses: cross-border gene flow and dispersal of insecticide resistance-associated genes in the mosquito Aedes aegypti from Brazil and French Guiana. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190120.	1.6	12
20	Successes and failures of sixty years of vector control in French Guiana: what is the next step?. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170398.	1.6	22
21	Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasites and Vectors, 2018, 11, 207.	2.5	63
22	Vector soup: highâ€throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Molecular Ecology Resources, 2017, 17, 172-182.	4.8	31
23	<i>Aedes aegypti</i> Larvicidal Sesquiterpene Alkaloids from <i>Maytenus oblongata</i> Journal of Natural Products, 2017, 80, 384-390.	3.0	12
24	International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites and Vectors, 2017, 10, 278.	2.5	23
25	Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 2017, 11, e0005625.	3.0	504
26	In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005526.	3.0	73
27	Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0005933.	3.0	105
28	DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding. PLoS ONE, 2017, 12, e0176993.	2.5	28
29	Anopheles fauna of coastal Cayenne, French Guiana: modelling and mapping of species presence using remotely sensed land cover data. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 750-756.	1.6	7
30	High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 561-569.	1.6	23
31	Malaria in French Guiana Linked to Illegal Gold Mining. Emerging Infectious Diseases, 2016, 22, 344-346.	4.3	54
32	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	3.0	43
33	Assessment of A Simple Compound-Saving Method To Study Insecticidal Activity of Natural Extracts and Pure Compounds Against Mosquito Larvae. Journal of the American Mosquito Control Association, 2016, 32, 337-340.	0.7	8
34	Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling. Journal of Medical Entomology, 2016, 54, tjw199.	1.8	8
35	Epidemiological and entomological studies of a malaria outbreak among French armed forces deployed at illegal gold mining sites reveal new aspects of the disease's transmission in French Guiana. Malaria Journal, 2016, 15, 35.	2.3	36
36	Detection of Chikungunya Virus Circulation Using Sugar-Baited Traps during a Major Outbreak in French Guiana. PLoS Neglected Tropical Diseases, 2016, 10, e0004876.	3.0	27

3

#	Article	IF	CITATIONS
37	Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data. PLoS ONE, 2016, 11, e0164685.	2.5	20
38	Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide. PLoS Neglected Tropical Diseases, 2015, 9, e0004226.	3.0	71
39	Anopheles darlingi (Diptera: Culicidae) Dynamics in Relation to Meteorological Data in a Cattle Farm Located in the Coastal Region of French Guiana: Advantage of Mosquito Magnet Trap. Environmental Entomology, 2015, 44, 454-462.	1.4	11
40	Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe. PLoS Neglected Tropical Diseases, 2015, 9, e0003780.	3.0	99
41	Identifying genomic changes associated with insecticide resistance in the dengue mosquito <i>Aedes aegypti</i> by deep targeted sequencing. Genome Research, 2015, 25, 1347-1359.	5.5	151
42	Updated Checklist of the Mosquitoes (Diptera: Culicidae) of French Guiana. Journal of Medical Entomology, 2015, 52, 770-782.	1.8	24
43	Malaria on the Guiana Shield: a review of the situation in French Guiana. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 525-533.	1.6	59
44	Mosquito magnet \hat{A}^{\otimes} liberty plus trap baited with octenol confirmed best candidate for Anopheles surveillance and proved promising in predicting risk of malaria transmission in French Guiana. Malaria Journal, 2014, 13, 384.	2.3	19
45	Objective sampling design in a highly heterogeneous landscape - characterizing environmental determinants of malaria vector distribution in French Guiana, in the Amazonian region. BMC Ecology, 2013, 13, 45.	3.0	11
46	A survey of adult anophelines in French Guiana: enhanced descriptions of species distribution and biting responses. Journal of Vector Ecology, 2013, 38, 203-209.	1.0	10
47	Confirmation of the Occurrence of Anopheles (Nyssorhynchus) Marajoara in French Guiana. Journal of the American Mosquito Control Association, 2012, 28, 309-311.	0.7	8
48	Knockdown resistance, Rdl alleles, and the annual entomological Inoculation rate of wild mosquito populations from Lower Moshi, Northern Tanzania. Journal of Global Infectious Diseases, 2012, 4, 114.	0.5	33
49	Investigation of a Sudden Malaria Outbreak in the Isolated Amazonian Village of Saül, French Guiana, January–April 2009. American Journal of Tropical Medicine and Hygiene, 2012, 86, 591-597.	1.4	20
50	Larvicidal Activity of Isoflavonoids from Muellera Frutescens Extracts Against Aedes Aegypti. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	0
51	Incrimination of Anopheles (Anopheles) intermedius Peryassú, An. (Nyssorhynchus) nuneztovari Gabaldón, An. (Nys.) oswaldoi Peryassú as natural vectors of Plasmodium falciparum in French Guiana. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 429-432.	1.6	32
52	Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 346-352.	1.6	63
53	Viewpoint: High susceptibility to Chikungunya virus of <i>Aedes aegypti</i> from the French West Indies and French Guiana. Tropical Medicine and International Health, 2011, 16, 134-139.	2.3	21
54	Unravelling the relationships between <i>Anopheles darlingi</i> (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America). Annals of Tropical Medicine and Parasitology, 2011, 105, 107-122.	1.6	44

#	Article	IF	Citations
55	Comparative data on the insecticide resistance of AnophelesÂalbimanus in relation to agricultural practices in northern Belize, CA. Journal of Pest Science, 2010, 83, 41-46.	3.7	13
56	Comparison of a novel high-throughput screening system with the Bottle assay for evaluating insecticide toxicity. Journal of Pesticide Sciences, 2009, 34, 283-286.	1.4	1
57	Contact irritancy and spatial repellency behaviors in Anopheles albimanus Wiedemann (Diptera:) Tj ETQq1 1 0.78	4314 rgBT 1.0	Overlock 1
58	Characterization of Spatial Repellent, Contact Irritant, and Toxicant Chemical Actions of Standard Vector Control Compounds ¹ . Journal of the American Mosquito Control Association, 2009, 25, 156-167.	0.7	91
59	Contact Irritancy and Spatial Repellency Behaviors inAnopheles albimanusWiedemann (Diptera:) Tj ETQq1 1 0.78	4314 rgBT 1.0	/Overlock 1
60	Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infection, Genetics and Evolution, 2008, 8, 489-503.	2.3	141
61	Polymerase Chain Reaction Identification of Three Members of the <l>Anopheles sundaicus</l> (Diptera: Culicidae) Complex, Malaria Vectors in Southeast Asia. Journal of Medical Entomology, 2007, 44, 723-731.	1.8	32
62	Polymerase Chain Reaction Identification of Three Members of the <i>Anopheles sundaicus </i> (Diptera:) Tj ETQqC 723-731.	0 0 0 rgBT 1.8	Overlock 10 42
63	The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, CÃ'te d'Ivoire. Infection, Genetics and Evolution, 2007, 7, 116-125.	2.3	52
64	Speciation and phylogeography of the Southeast Asian Anopheles sundaicus complex. Infection, Genetics and Evolution, 2007, 7, 484-493.	2.3	30
65	Anopheles (Cellia) epiroticus (Diptera: Culicidae), a new malaria vector species in the Southeast Asian Sundaicus Complex. Bulletin of Entomological Research, 2005, 95, 329-339.	1.0	34
66	Molecular Evidence of Speciation Between Island and Continental Populations of <i>Anopheles </i> Cellia Sundaicus Colptera: Culicidae), a Principal Malaria Vector Taxon in Southeast Asia. Journal of Medical Entomology, 2004, 41, 287-295.	1.8	37
67	BIONOMICS AND SYSTEMATICS OF THE ORIENTAL ANOPHELES SUNDAICUS COMPLEX IN RELATION TO MALARIA TRANSMISSION AND VECTOR CONTROL. American Journal of Tropical Medicine and Hygiene, 2004, 71, 518-524.	1.4	43
68	Bionomics and systematics of the oriental Anopheles sundaicus complex in relation to malaria transmission and vector control. American Journal of Tropical Medicine and Hygiene, 2004, 71, 518-24.	1.4	21