Javier RodrÃ-guez VÃ;zquez De Aldana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4916217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical waveguides in crystalline dielectric materials produced by femtosecondâ€laser micromachining. Laser and Photonics Reviews, 2014, 8, 251-275.	4.4	530
2	Transferring orbital and spin angular momenta of light to atoms. New Journal of Physics, 2010, 12, 083053.	1.2	140
3	Breakdown of Stabilization of Atoms Interacting with Intense, High-Frequency Laser Pulses. Physical Review Letters, 2000, 85, 1835-1838.	2.9	127
4	Photoionization with orbital angular momentum beams. Optics Express, 2010, 18, 3660.	1.7	103
5	Assessment of femtosecond laser induced periodic surface structures on polymer films. Physical Chemistry Chemical Physics, 2013, 15, 11287.	1.3	95
6	Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Optics Express, 2012, 20, 18620.	1.7	82
7	Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Applied Physics Letters, 2012, 100, .	1.5	71
8	Atoms interacting with intense, high-frequency laser pulses: Effect of the magnetic-field component on atomic stabilization. Physical Review A, 2001, 64, .	1.0	58
9	Q-switching of waveguide lasers based on graphene/WS_2 van der Waals heterostructure. Photonics Research, 2017, 5, 406.	3.4	58
10	Femtosecond-laser-written, stress-induced Nd:YVO_4 waveguides preserving fluorescence and Raman gain. Optics Letters, 2010, 35, 916.	1.7	51
11	Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides. Applied Physics Letters, 2010, 97, 031119.	1.5	49
12	Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription. Optics Express, 2011, 19, 12503.	1.7	48
13	Femtosecond laser micromachining of lithium niobate depressed cladding waveguides. Optical Materials Express, 2013, 3, 1378.	1.6	48
14	Femtosecond laser-written lithium niobate waveguide laser operating at 1085Ânm. Optical Engineering, 2014, 53, 107109.	0.5	48
15	Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes. Applied Physics A: Materials Science and Processing, 2011, 104, 301-309.	1.1	47
16	Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Scientific Reports, 2014, 4, 5988.	1.6	46
17	Magnetic-field effect in atomic ionization by intense laser fields. Optics Express, 1999, 5, 144.	1.7	45
18	Femtosecond-laser-written Tm:KLu(WO_4)_2 waveguide lasers. Optics Letters, 2017, 42, 1169.	1.7	43

#	Article	IF	CITATIONS
19	Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide. Optics Express, 2016, 24, 10385.	1.7	40
20	Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments. Optics Letters, 2010, 35, 330.	1.7	39
21	Femtosecond evolution of the pyrrole molecule excited in the near part of its UV spectrum. Journal of Chemical Physics, 2012, 137, 064317.	1.2	39
22	Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses. Optics Express, 2006, 14, 1329.	1.7	36
23	Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation. Optics Express, 2012, 20, 9763.	1.7	36
24	Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Optics Express, 2014, 22, 31293.	1.7	36
25	Efficient second harmonic generation by birefringent phase matching in femtosecondâ€laserâ€inscribed KTP cladding waveguides. Physica Status Solidi - Rapid Research Letters, 2012, 6, 306-308.	1.2	35
26	Dual-wavelength waveguide lasers at 1064 and 1079  nm in Nd:YAP crystal by direct femtosecond laser writing. Optics Letters, 2015, 40, 2437.	1.7	34
27	Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments. Journal Physics D: Applied Physics, 2005, 38, 2764-2768.	1.3	33
28	Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model. Physical Review A, 2000, 61, .	1.0	32
29	Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Optics Express, 2015, 23, 9730.	1.7	32
30	Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers. Applied Surface Science, 2013, 278, 226-233.	3.1	31
31	Heuristic modelling of laser written mid-infrared LiNbO_3 stressed-cladding waveguides. Optics Express, 2016, 24, 7777.	1.7	31
32	High-order harmonic generation in atomic clusters with a two-dimensional model. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 325.	0.9	30
33	Efficient continuous-wave laser operation at 1064 nm in Nd:YVO ₄ cladding waveguides produced by femtosecond laser inscription. Optics Express, 2012, 20, 16801.	1.7	30
34	Femtosecond laser written waveguides with MoS_2 as satuable absorber for passively Q-switched lasing. Optical Materials Express, 2016, 6, 367.	1.6	30
35	Femtosecond-Laser-Inscribed BiB\$_{3}\$O\$_{6}\$ Nonlinear Cladding Waveguide for Second-Harmonic Generation. Applied Physics Express, 2012, 5, 072701.	1.1	29
36	Femtosecond Laser Writing of Optical-Lattice-Like Cladding Structures for Three-Dimensional Waveguide Beam Splitters in LiNbO ₃ Crystal. Journal of Lightwave Technology, 2016, 34, 3587-3591.	2.7	28

#	Article	IF	CITATIONS
37	UV laser removal of varnish on tempera paints with nanosecond and femtosecond pulses. Physical Chemistry Chemical Physics, 2011, 13, 4625.	1.3	27
38	Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation. Optics Express, 2014, 22, 12900.	1.7	27
39	Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses. Optics Express, 2011, 19, 4977.	1.7	26
40	Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals. Optical Materials Express, 2012, 2, 657.	1.6	26
41	Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Optics Express, 2019, 27, 30941.	1.7	26
42	Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides. Applied Physics Letters, 2011, 98, 181103.	1.5	25
43	All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Scientific Reports, 2017, 7, 7034.	1.6	25
44	Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO_4 channel waveguides. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1607.	0.9	24
45	Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with "ear-like― structures: fabrication and laser generation. Optics Express, 2021, 29, 4296.	1.7	24
46	Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription. Scientific Reports, 2016, 6, 22310.	1.6	23
47	Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Optics and Laser Technology, 2018, 103, 82-88.	2.2	23
48	Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes. Photonics Research, 2018, 6, 971.	3.4	23
49	Mid-infrared waveguides in zinc sulfide crystal. Optical Materials Express, 2013, 3, 466.	1.6	22
50	Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes. Optics Express, 2015, 23, 15343.	1.7	22
51	Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions. Optical Materials, 2016, 51, 185-189.	1.7	22
52	Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO_4)_2: µ-Raman study and laser operation. Optical Materials Express, 2017, 7, 4258.	1.6	22
53	Spin effects in the interaction of atoms with intense and high-frequency laser fields in the non-relativistic regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 3701-3711.	0.6	21
54	Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers. Optics Letters, 2013, 38, 3294.	1.7	21

#	Article	IF	CITATIONS
55	Multianalytical characterization of Late Roman glasses including nanosecond and femtosecond laser induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2015, 30, 1590-1599.	1.6	21
56	Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation. Optical Materials, 2016, 57, 169-173.	1.7	21
57	Low-loss 3D-laser-written mid-infrared LiNbO_3 depressed-index cladding waveguides for both TE and TM polarizations. Optics Express, 2017, 25, 3722.	1.7	21
58	Ridge Waveguides and Y-Branch Beam Splitters in KTiOAsO4 Crystal by 15 MeV Oxygen Ion Implantation and Femtosecond Laser Ablation. Journal of Lightwave Technology, 2017, 35, 225-229.	2.7	20
59	Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS ₂ . Optics Express, 2019, 27, 8745.	1.7	20
60	Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO_4+KTP hybrid system. Optics Letters, 2011, 36, 975.	1.7	19
61	Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal. Optics Express, 2019, 27, 2101.	1.7	19
62	Femtosecond laser micromachining of Nd:GdCOB ridge waveguides for second harmonic generation. Optical Materials, 2012, 34, 1913-1916.	1.7	18
63	Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides. Optics Express, 2013, 21, 18963.	1.7	18
64	Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO ₃ Crystal. Journal of Lightwave Technology, 2019, 37, 3452-3458.	2.7	18
65	Femtosecond-laser micromachined optical waveguides in Bi ₄ Ge ₃ O ₁₂ crystals. Applied Optics, 2013, 52, 3713.	0.9	17
66	3D laser-written silica glass step-index high-contrast waveguides for the 35  μm mid-infrared range. Optics Letters, 2015, 40, 5818.	1.7	17
67	Three-Dimensional Waveguide Splitters Inscribed in Nd:YAG by Femtosecond Laser Writing: Realization and Laser Emission. Journal of Lightwave Technology, 2016, 34, 1328-1332.	2.7	17
68	Femtosecond Laser Inscribed Y-Branch Waveguide in Nd:YAG Crystal: Fabrication and Continuous-Wave Lasing. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 227-230.	1.9	17
69	Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO ₃ cladding waveguides. Optical Materials Express, 2018, 8, 1890.	1.6	17
70	Femtosecond-laser-written Ho:KGd(WO ₄) ₂ waveguide laser at 21  μm. Opti Letters, 2019, 44, 1738.	^{2S} 1.7	17
71	Optical waveguide arrays induced in fused silica by void-like defects using femtosecond laser pulses. Applied Physics B: Lasers and Optics, 2007, 86, 343-346.	1.1	16
72	Channel waveguide lasers in Nd:LGS crystals. Optics Express, 2013, 21, 6503.	1.7	16

#	Article	IF	CITATIONS
73	Continuous wave laser operation in Nd:CGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses. Optical Materials Express, 2013, 3, 278.	1.6	16
74	Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides. Optics Express, 2013, 21, 11562.	1.7	16
75	Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions. Journal of Applied Physics, 2015, 117, .	1.1	16
76	Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Optics Letters, 2016, 41, 2169.	1.7	16
77	Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Optics Express, 2017, 25, 24236.	1.7	16
78	Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photonics Research, 2020, 8, 257.	3.4	16
79	Integrated-grating-induced control of second-harmonic beams in frequency-doubling crystals. Optics Letters, 2005, 30, 2763.	1.7	15
80	Ultrafast lasers: A new frontier for optical materials processing. Optical Materials, 2012, 34, 572-578.	1.7	15
81	Stress-induced buried waveguides in the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions. Applied Surface Science, 2013, 278, 289-294.	3.1	15
82	Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics. Optical Materials Express, 2013, 3, 645.	1.6	15
83	Femtosecond-Laser-Written S-Curved Waveguide in Nd:YAP Crystal: Fabrication and Multi-Gigahertz Lasing. Journal of Lightwave Technology, 2020, 38, 6845-6852.	2.7	15
84	Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers. Optics Letters, 2020, 45, 216.	1.7	15
85	Wavelength tuning of femtosecond pulses generated in nonlinear crystals by using diffractive lenses. Optics Letters, 2010, 35, 3694.	1.7	14
86	Efficient laser emission from cladding waveguide inscribed in Nd:GdVO_4 crystal by direct femtosecond laser writing. Optics Letters, 2014, 39, 4553.	1.7	14
87	Continuous-wave lasing at 1.06μm in femtosecond laser written Nd:KGW waveguides. Optical Materials, 2014, 37, 93-96.	1.7	14
88	Optical ridge waveguides in Yb:YAG laser crystal produced by combination of swift carbon ion irradiation and femtosecond laser ablation. Optics and Laser Technology, 2015, 72, 100-103.	2.2	14
89	Watt-level ultrafast laser inscribed thulium waveguide lasers. Progress in Quantum Electronics, 2020, 72, 100266.	3.5	14
90	Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser. Optics Express, 2020, 28, 18027.	1.7	14

#	Article	IF	CITATIONS
91	Non-collinear sum-frequency generation of femtosecond pulses in a micro-structured Î ² -BaB_2O_4 crystal. Optics Express, 2008, 16, 18109.	1.7	13
92	Femtosecond filamentation in sapphire with diffractive lenses. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2059.	0.9	13
93	Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription. Optical Materials, 2015, 39, 125-129.	1.7	13
94	Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting. Applied Surface Science, 2018, 441, 372-380.	3.1	13
95	Photoionization of two-electronortho-atoms. Physical Review A, 2003, 68, .	1.0	12
96	Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas. Biomedical Optics Express, 2011, 2, 2950.	1.5	12
97	Femtosecond laser micromachined ridge waveguide lasers in Nd:YAG ceramics. Optical Materials, 2013, 36, 228-231.	1.7	12
98	Controlled Multibeam Supercontinuum Generation With a Spatial Light Modulator. IEEE Photonics Technology Letters, 2014, 26, 1661-1664.	1.3	12
99	Optical waveguides in LiTaO3 crystals fabricated by swift C5+ ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2014, 325, 43-46.	0.6	12
100	Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber. Optical Materials, 2015, 46, 414-417.	1.7	12
101	Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription. Micromachines, 2020, 11, 10.	1.4	12
102	On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination. Optics Letters, 2013, 38, 1621.	1.7	11
103	Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO 3 crystal. Optical Engineering, 2015, 54, 067113.	0.5	11
104	Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides. Optics Express, 2016, 24, 16156.	1.7	11
105	Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing. Optical Materials, 2016, 51, 190-193.	1.7	11
106	Femtosecond-laser-written superficial cladding waveguides in Nd:CaF 2 crystal. Optics and Laser Technology, 2017, 92, 163-167.	2.2	11
107	Depressed-Cladding 3-D Waveguide Arrays Fabricated With Femtosecond Laser Pulses. Journal of Lightwave Technology, 2017, 35, 2520-2525.	2.7	11
108	Wavefront retrieval of amplified femtosecond beams by second-harmonic generation. Optics Express, 2011, 19, 22851.	1.7	10

#	Article	IF	CITATIONS
109	Buried waveguides in Nd:YLF crystals obtained by femtosecond laser writing under double line approach. Applied Physics A: Materials Science and Processing, 2013, 110, 595-599.	1.1	10
110	Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide. Optics Express, 2013, 21, 22263.	1.7	10
111	Second harmonic generation of violet light in femtosecond-laser-inscribed BiB_3O_6 cladding waveguides. Optical Materials Express, 2013, 3, 1279.	1.6	10
112	Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials. Scientific Reports, 2017, 7, 46162.	1.6	10
113	Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation. Optics Express, 2017, 25, 19603.	1.7	10
114	Efficient quasi-phase-matching in fan-out PPSLT crystal waveguides by femtosecond laser direct writing. Optics Express, 2019, 27, 36875.	1.7	10
115	Pulsed Laser SEU Cross Section Measurement Using Coincidence Detectors. IEEE Transactions on Nuclear Science, 2009, 56, 2001-2007.	1.2	9
116	Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength. Optics and Laser Technology, 2014, 56, 382-386.	2.2	9
117	Fs-laser-written erbium-doped double tungstate waveguide laser. Optics Express, 2018, 26, 30826.	1.7	9
118	Three-dimensional angular distribution of harmonics radiated by an atom interacting with a short high-frequency super-intense laser pulse. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 1633-1642.	0.6	8
119	Surface ablation of RbTiOPO4 by femtosecond laser. Optical Materials, 2011, 34, 207-214.	1.7	8
120	Channel waveguides preserving luminescence features in Nd ³⁺ :Y ₂ O ₃ ceramics produced by ultrafast laser inscription. Physica Status Solidi - Rapid Research Letters, 2011, 5, 184-186.	1.2	8
121	Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties. Optical Materials, 2016, 58, 61-66.	1.7	8
122	Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing. Optical Materials, 2017, 73, 45-49.	1.7	8
123	Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Optical Materials, 2017, 72, 220-225.	1.7	8
124	Tunable violet radiation in a quasi-phase-matched periodically poled stoichiometric lithium tantalate waveguide by direct femtosecond laser writing. Results in Physics, 2020, 19, 103373.	2.0	8
125	The Role of Thermal Accumulation on the Fabrication of Diffraction Gratings in Ophthalmic PHEMA by Ultrashort Laser Direct Writing. Polymers, 2020, 12, 2965.	2.0	8
126	Atomic-electron excitation by a local phase shift of the wave function. Physical Review A, 2000, 61, .	1.0	7

#	Article	IF	CITATIONS
127	Thermal and Optical Characterization of Undoped and Neodymium-Doped Y ₃ ScAl ₄ O ₁₂ Ceramics. Journal of Physical Chemistry C, 2014, 118, 13781-13789.	1.5	7
128	Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation. Applied Physics Letters, 2017, 111, .	1.5	7
129	Ultrafast Laser Inscription and â^1⁄42 ι⁄4m Laser Operation of Y-Branch Splitters in Monoclinic Crystals. Journal of Lightwave Technology, 2020, 38, 4374-4384.	2.7	7
130	Tm ³⁺ and Ho ³⁺ colasing in in-band pumped waveguides fabricated by femtosecond laser writing. Optics Letters, 2021, 46, 122.	1.7	7
131	Atomic-stabilization experiment involving two laser pulses: numerical simulation. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1467.	0.9	6
132	Synthesis of Ceramic Nanoparticles by Ultrafast Laser Ablation of Solid Targets in Water. Journal of Nanoscience and Nanotechnology, 2006, 6, 1961-1967.	0.9	6
133	Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation. Optical Materials Express, 2014, 4, 1166.	1.6	6
134	Femtosecond laser-written double-cladding waveguides in Nd:GdVO ₄ crystal: Raman analysis, guidance, and lasing. Optical Engineering, 2014, 53, 097105.	0.5	6
135	Nearâ€Infrared Allâ€Optical Switching Based on Nano/Micro Optical Structures in YVO ₄ Matrix: Embedded Plasmonic Nanoparticles and Laserâ€Written Waveguides. Advanced Photonics Research, 2021, 2, 2000064.	1.7	6
136	Ultrafast laser inscribed waveguide lasers in Tm:CALGO with depressed-index cladding. Optics Express, 2020, 28, 3528.	1.7	6
137	Strong-field short-pulse ionization of the molecular hydrogen ion. Laser Physics Letters, 2004, 1, 25-31.	0.6	5
138	Femtosecond laser micromachined optical waveguides in LiTaO ₃ crystal. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1014-1017.	1.2	5
139	Optical-lattice-like waveguide structures in Ti:Sapphire by femtosecond laser inscription for beam splitting. Optical Materials Express, 2017, 7, 1942.	1.6	5
140	Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions. Photonics Research, 2017, 5, 728.	3.4	5
141	Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Optics and Laser Technology, 2020, 123, 105898.	2.2	5
142	Magnetic field effects in strong field ionization of single-electron atoms: Three-dimensional numerical simulations. Laser and Particle Beams, 2002, 20, 185-193.	0.4	4
143	Influence of Pauli exclusion principle on the strong field ionization of two electron atoms. Applied Physics B: Lasers and Optics, 2004, 78, 829-833.	1.1	4
144	Low-loss fs-laser-written surface waveguide lasers at >2  µm in monoclinic Tm3+:MgWO4. Optics Letters, 2020, 45, 4060.	1.7	4

#	Article	IF	CITATIONS
145	Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics. Optical Materials Express, 2020, 10, 2695.	1.6	4
146	Propagation of terawatt laser pulses in the air. Applied Physics A: Materials Science and Processing, 2008, 92, 865-871.	1.1	3
147	Micro ribbon cable bonding for an implantable device. , 2008, , .		3
148	New approaches for the fabrication of photonic structures of nonlinear optical materials. Journal of Luminescence, 2009, 129, 1441-1447.	1.5	3
149	Role of the longitudinal piston error in a tiled-grating compressor in second and high-order harmonic generation. Applied Physics B: Lasers and Optics, 2012, 108, 773-777.	1.1	3
150	Enhanced Second Harmonic Generation in Femtosecond Laser Inscribed Double-Cladding Waveguide of Nd:GdCOB Crystal. Journal of Lightwave Technology, 2013, 31, 3873-3878.	2.7	3
151	Simultaneous generation of violet, blue, and green lasers using Nd:YAl ₃ (BO ₃) ₄ channel waveguides under pumping at 815 nm. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1018-1021.	1.2	3
152	Dual-line optical waveguides in Cu:KNSBN crystal fabricated by direct femtosecond laser writing. Optical Engineering, 2015, 54, 097106.	0.5	3
153	Recent results on photonic devices made by laser writing: 3D 3T near IR waveguides, mid-IR spectrometers and electro-optic beam combiners. Proceedings of SPIE, 2016, , .	0.8	3
154	Stress-induced waveguides in Nd:YAG by simultaneous double-beam irradiation with femtosecond pulses. Optical Materials, 2016, 51, 84-88.	1.7	3
155	Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Optical Materials, 2018, 84, 531-535.	1.7	3
156	Tapered depressed-cladding waveguide lasers modulated by Ag nanoparticles embedded in SiO2. Results in Physics, 2021, 30, 104897.	2.0	3
157	Sub-half-cycle polarization gates in ultra-short laser pulses induced by non-linear propagation effects. Applied Physics B: Lasers and Optics, 2007, 88, 5-11.	1.1	2
158	Effect of ultrashort laser microstructuring of enamel and dentin surfaces on bond strengths in orthodontics and conservative dentistry. Photonics & Lasers in Medicine, 2012, 1, .	0.3	2
159	Formation of polycrystalline TiO2 on the ablated surfaces of RbTiOPO4 single crystals by thermal annealing. CrystEngComm, 2014, 16, 4281-4288.	1.3	2
160	Three-dimensional femtosecond laser micromachining of dielectric crystals for photonic waveguiding applications. , 2015, , .		2
161	Generation of Multi-Gigahertz Laser Pulses in Optical Lattice-Like Cladding Waveguides with PdSe ₂ as a New Saturable Absorber. , 2019, , .		2
162	Direct Femtosecond Laser Writing of Optical Waveguides in Dielectrics. Springer Series in Materials Science, 2020, , 185-210.	0.4	2

#	Article	IF	CITATIONS
163	Numerical simulations of 1 GeV/nucleon U92Âimpact against atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 4719-4731.	0.6	1
164	Spatial Modulation of Linear and Quadratic Susceptibilities in Lithium Niobate Crystals by Using Femtosecond Laser Pulses. Ferroelectrics, 2006, 333, 151-156.	0.3	1
165	Fabrication of photonic structures in crystals of the KTiOPO4 family by ultrafast laser ablation. Physics Procedia, 2010, 8, 126-135.	1.2	1
166	Single-mode mid-infrared waveguides for spectro-interferometry applications. Proceedings of SPIE, 2010, , .	0.8	1
167	Efficient lasing in Nd:GdVO4depressed cladding waveguides produced by femtosecond laser writing. , 2014, , .		1
168	A novel micro-processing of waveguide coupler in birefringent crystal by twin tracks of single-scan femtosecond laser writing. , 2015, , .		1
169	QUASI-Three-Level Laser Emissions of Neodymium-Doped Disordered Crystal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 390-394.	1.9	1
170	All-optical thermal microscopy of laser-excited waveguides. Optics Letters, 2016, 41, 2061.	1.7	1
171	Yb:KLuW Channel Waveguide Lasers Passively Q-Switched by Evanescent-Field Interaction with Carbon Nanotubes. , 2019, , .		1
172	Graphene Q-switched laser operation in Nd:YVO4 cladding waveguides produced by femtosecond laser writing. , 2014, , .		1
173	Writing diffraction gratings in KDP with femtosecond pulses for noncollinear second-harmonic generation. , 2006, , .		Ο
174	Damage channeling in femtosecond laser micro-structured SBN crystals. Applied Surface Science, 2008, 255, 3132-3136.	3.1	0
175	Femtosecond Laser Disruption of Filamentous Cyanobacteria Unveils Dissimilar Cellular Stability Between Heterocysts and Vegetative Cells. Photochemistry and Photobiology, 2008, 84, 1576-1582.	1.3	Ο
176	Analysis of linear and nonlinear optical properties of diffraction gratings inscribed on the surface of single crystals of the KTiOPO 4 family. , 2010, , .		0
177	Diffractive optics for spectral tuning of second harmonic and supercontinuum generated in nonlinear crystals. , 2011, , .		Ο
178	On-axis Dammann lenses and femtosecond pulses: triggering non-linear effects. Proceedings of SPIE, 2013, , .	0.8	0
179	Generation of on-axis optical filaments by means of Dammann lenses. , 2013, , .		0
180	Generation of spectrally shaped UV-vis supercontinuum femtosecond pulses by means of diffractive lenses. , 2013, , .		0

#	Article	IF	CITATIONS
181	Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6Cladding Waveguides. MATEC Web of Conferences, 2013, 8, 06011.	0.1	О
182	Three dimensional beam splitters and lasing based on Nd:YAG waveguides by femtosecond laser writing. , 2015, , .		0
183	Dynamic Control of Interference Effects Between Optical Filaments through Programmable Optical Phase Modulation. Journal of Display Technology, 2016, 12, 589-593.	1.3	0
184	Single-shot femtosecond laser ablation of wide-field irradiance patterns onto a silicon sample. , 2017, ,		0
185	Highly-Efficient Femtosecond-Laser-Written Waveguide Lasers at ~2 µm in Monoclinic Tm:MgWO4. , 2018, , .		Ο
186	Ultrafast Laser Inscription and Laser Operation of Y-Branch Splitters in Monoclinic Thulium-Doped Crystals. , 2019, , .		0
187	Femtosecond-Laser-Written Waveguide Lasers at â^¼2 μm. , 2019, , .		Ο
188	Generation of Stationary On-Axis Optical Filaments by Means of Dammann Lenses. Springer Proceedings in Physics, 2015, , 774-778.	0.1	0
189	Femtosecond Laser Writing of Lithium Tantalate Crystals for Waveguide Fabrication. , 2018, , .		Ο
190	Passive Q-switching of femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers by graphene and MoS2 saturable absorbers. , 2018, , .		0
191	High resolution and wideband integrated optics infrared stationary-wave spectrometer fabricated by ultrafast laser inscription. , 2018, , .		Ο
192	Watt-Level fs-Laser-Written Thulium Waveguide Lasers. , 2019, , .		0
193	Ultrafast Laser Inscribed Waveguide Lasers in Tm3+:SrF2. , 2020, , .		Ο
194	Near-Infrared Femtosecond Direct Laser Written Waveguide Lasers [Invited]. , 2020, , .		0
195	Adjustable Pulsed Operation from Q-switching to CW Mode-locking in a Yb:KLuW Waveguide Laser. , 2021, , .		0