Göknur YaÅä Atmaca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4916152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 244-249.	3.9	74
2	Novel highly soluble fluoro, chloro, bromo-phenoxy-phenoxy substituted zinc phthalocyanines; synthesis, characterization andÂphotophysicochemical properties. Journal of Organometallic Chemistry, 2014, 752, 115-122.	1.8	48
3	Peripherally tetra-benzimidazole units-substituted zinc(II) phthalocyanines: Synthesis, characterization and investigation of photophysical and photochemical properties. Journal of Luminescence, 2018, 194, 123-130.	3.1	48
4	Synthesis and photophysicochemical properties of novel thiadiazole-substituted zinc (II), gallium (III) and silicon (IV) phthalocyanines for photodynamic therapy. Inorganica Chimica Acta, 2017, 467, 169-176.	2.4	46
5	The photo-physicochemical properties and in vitro sonophotodynamic therapy activity of Di-axially substituted silicon phthalocyanines on PC3 prostate cancer cell line. Dyes and Pigments, 2021, 184, 108760.	3.7	43
6	The Synthesis, Characterization, Crystal Structure and Photophysical Properties of a New Meso-BODIPY Substituted Phthalonitrile. Journal of Fluorescence, 2015, 25, 1225-1234.	2.5	40
7	Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. Journal of Luminescence, 2017, 192, 888-892.	3.1	40
8	Novel sulfonated hydrophilic indium(III) and gallium(III) phthalocyanine photosensitizers: preparation and investigation of photophysicochemical properties. Journal of Coordination Chemistry, 2017, 70, 2659-2670.	2.2	38
9	Synthesis, characterization, photo-physicochemical and biological properties of water-soluble tetra-substituted phthalocyanines: Antidiabetic, anticancer and anticholinergic potentials. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112511.	3.9	32
10	Ultrasound versus Light: Exploring Photophysicochemical and Sonochemical Properties of Phthalocyanine-Based Therapeutics, Theoretical Study, and In Vitro Evaluations. ACS Applied Bio Materials, 2022, 5, 1139-1150.	4.6	32
11	Synthesis of tetra-substituted phthalocyanines bearing 2-(ethyl(m-tolyl)amino)ethanol: Computational and photophysicochemical studies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 373, 77-86.	3.9	31
12	Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative. Journal of Molecular Structure, 2021, 1237, 130402.	3.6	30
13	Synthesis of tetra-substituted metallophthalocyanines: Spectral, structural, computational studies and investigation of their photophysical and photochemical properties. Polyhedron, 2019, 158, 316-324.	2.2	28
14	Comparatively singlet oxygen efficiency by sono-photochemical and photochemical studies of new lutetium (III) phthalocyanines. Dyes and Pigments, 2021, 190, 109325.	3.7	22
15	Photophysicochemical, sonochemical, and biological properties of novel hexadeca-substituted phthalocyanines bearing fluorinated groups. Dalton Transactions, 2022, 51, 478-490.	3.3	22
16	High Photosensitized Singlet Oxygen Generating Zinc and Chloroindium Phthalocyanines Bearing (4â€ɨsopropylbenzyl)oxy Groups as Potential Agents for Photophysicochemical Applications. ChemistrySelect, 2019, 4, 515-520.	1.5	21
17	Measurement of singlet oxygen generation of 9(Hydroxymethyl)anthracene substituted silicon phthalocyanine by sono-photochemical and photochemical studies. Journal of Molecular Structure, 2021, 1226, 129320.	3.6	21
18	Synthesis, characterization of new phthalocyanines and investigation of photophysical, photochemical properties and theoretical studies. Journal of Porphyrins and Phthalocyanines, 2018, 22, 250-265.	0.8	20

Göĸnur YaÅŸa Atmaca

#	Article	IF	CITATIONS
19	Synthesis and photophysicochemical studies of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines. Journal of Molecular Structure, 2015, 1102, 190-196.	3.6	19
20	Novel peripherally substituted zinc phthalocyanine: synthesis, characterization, investigation of photophysicochemical properties and theoretical study. Journal of Coordination Chemistry, 2017, 70, 3095-3109.	2.2	19
21	Peripherally and non-peripherally tetra-HBME (4-hydroxybenzyl methyl ether) substituted metal-free and zinc(II) phthalocyanines: Synthesis, characterization, and investigation of photophysical and photochemical properties. Inorganica Chimica Acta, 2018, 477, 199-205.	2.4	19
22	Synthesis of new water soluble silicon phthalocyanine substituted by linker sulfur atom and photophysicochemical studies for photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1398-1405.	0.8	18
23	Investigation of photophysical and photochemical properties of phthalocyanines bearing fluorinated groups. Monatshefte Für Chemie, 2020, 151, 181-190.	1.8	18
24	The effects of zinc(II)phthalocyanine photosensitizers on biological activities of epitheloid cervix carcinoma cells and precise determination of absorbed fluence at a specific wavelength. Dyes and Pigments, 2022, 198, 110012.	3.7	18
25	Measurement of improved singlet oxygen generations of indium chloride phthalocyanines by comparatively sono-photochemical and photochemical studies. Dyes and Pigments, 2021, 194, 109630.	3.7	17
26	Investigation of the biological and photophysicochemical properties of new non-peripheral fluorinated phthalocyanines. Dalton Transactions, 2021, 50, 2736-2745.	3.3	15
27	Novel carboxylic acid terminated silicon(IV) and zinc(II) phthalocyanine photosensitizers: Synthesis, photophysical and photochemical studies. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1010-1021.	0.8	13
28	Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies. Polyhedron, 2021, 193, 114894.	2.2	13
29	Improved singlet oxygen yields of new palladium phthalocyanines using sonochemistry and comparisons with photochemistry. Polyhedron, 2021, 206, 115351.	2.2	13
30	Photophysicochemical and Biological Properties of New Phthalocyanines Bearing 4â€{trifluoromethoxy)phenoxy and 2â€(4â€methylthiazolâ€5â€yl)ethoxy Groups on Peripheral Positions. Photochemistry and Photobiology, 2022, 98, 894-906.	2.5	12
31	Investigation of the differences between sono-photochemical and photochemical studies for singlet oxygen generation of indium phthalocyanine. Inorganica Chimica Acta, 2021, 515, 120052.	2.4	10
32	Effect of Position and Connected Atom on Photophysical and Photochemical Properties of Some Fluorinated Metallophthalocyanines. Photochemistry and Photobiology, 2021, 97, 270-277.	2.5	8
33	Five-nuclear phthalocyanine complex bearing terpyridine zinc complex: Synthesis, and photophysicochemical studies. Journal of Porphyrins and Phthalocyanines, 2018, 22, 181-188.	0.8	6
34	Phthalocyanines with bromobenzenesulfanyl substituents at non-peripheral position: Preparation, photophysical and photochemical properties. Journal of Porphyrins and Phthalocyanines, 2019, 23, 821-827.	0.8	6
35	Pegylated metal-free and zinc(<scp>ii</scp>) phthalocyanines: synthesis, photophysicochemical properties and <i>in vitro</i> photodynamic activities against head, neck and colon cancer cell lines. Dalton Transactions, 2022, 51, 10136-10147.	3.3	6
36	Synthesis, photophysics, and photochemistry of peripherally Schiff base-zinc complex substituted zinc phthalocyanine. Journal of Coordination Chemistry, 2018, 71, 1258-1267.	2.2	3

#	Article	IF	CITATIONS
37	Synthesis of waterâ€soluble phthalocyanines containing 1â€methylâ€1 H â€imidazoleâ€2â€thiol: Investigation of DNA nuclease, αâ€glucosidase inhibitory, and photoâ€physicochemical properties. Applied Organometallic Chemistry, 2021, 35, e6202.	3.5	3
38	Gallium chloride phthalocyanines possessing 4â€(trifluoromethoxy)phenoxy units: Synthesis, characterization, and photophysicochemical investigations. Journal of the Chinese Chemical Society, 2021, 68, 1466-1477.	1.4	3
39	Synthesis of new water soluble silicon phthalocyanine substituted by linker sulfur atom and photophysicochemical studies for photodynamic therapy. , 2021, , 708-715.		0
40	New soluble 4-(4-formyl-2,6-dimethoxyphenoxy) substituted phthalocyanines: Synthesis, characterization, photophysical and photochemical properties. Main Group Chemistry, 2021, , 1-10.	0.8	0