Jianhua Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4915196/publications.pdf

Version: 2024-02-01

304743 395702 1,431 33 22 33 citations h-index g-index papers 33 33 33 1302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced Negativeâ€Bias Illumination Temperature Stability of Praseodymiumâ€Doped InGaO Thinâ€Film Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000812.	1.8	5
2	Improved performance of inverted quantum dot light-emitting diodes by blending the small-molecule and polymer materials as hole transport layer. Organic Electronics, 2020, 80, 105618.	2.6	15
3	Improved performance of quantum dot light-emitting diodes by hybrid electron transport layer comprised of ZnO nanoparticles doped organic small molecule. Organic Electronics, 2019, 74, 144-151.	2.6	18
4	Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye. Journal of Materials Chemistry C, 2019, 7, 5755-5763.	5.5	43
5	Trap-Assisted Enhanced Bias Illumination Stability of Oxide Thin Film Transistor by Praseodymium Doping. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5232-5239.	8.0	34
6	High-Efficiency and High-Luminance Three-Color White Organic Light-Emitting Diodes with Low Efficiency Roll-Off. ECS Journal of Solid State Science and Technology, 2018, 7, R99-R103.	1.8	9
7	Efficient Bipolar Blue AlEgens for Highâ€Performance Nondoped Blue OLEDs and Hybrid White OLEDs. Advanced Functional Materials, 2018, 28, 1803369.	14.9	130
8	Improving Thermal Stability of Solution-Processed Indium Zinc Oxide Thin-Film Transistors by Praseodymium Oxide Doping. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 28764-28771.	8.0	20
9	Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25%. ACS Nano, 2018, 12, 6040-6049.	14.6	82
10	Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7668-7683.	5.5	95
11	Doping-free tandem white organic light-emitting diodes. Science Bulletin, 2017, 62, 1193-1200.	9.0	37
12	High-Performance Doping-Free Hybrid White OLEDs Based on Blue Aggregation-Induced Emission Luminogens. ACS Applied Materials & Interfaces, 2017, 9, 34162-34171.	8.0	66
13	Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, 60, 1349-1355.	8.2	67
14	Manipulation of Charge and Exciton Distribution Based on Blue Aggregationâ€Induced Emission Fluorophors: A Novel Concept to Achieve Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 776-783.	14.9	194
15	High-performance doping-free hybrid white organic light-emitting diodes: The exploitation of ultrathin emitting nanolayers (<1 nm). Nano Energy, 2016, 26, 26-36.	16.0	88
16	Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31, 82-89.	2.6	59
17	Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance. Journal of Industrial and Engineering Chemistry, 2015, 30, 85-91.	5.8	20
18	Harnessing charge and exciton distribution towards extremely high performance: the critical role of guests in single-emitting-layer white OLEDs. Materials Horizons, 2015, 2, 536-544.	12.2	48

#	Article	IF	CITATIONS
19	A host–guest system comprising high guest concentration to achieve simplified and high-performance hybrid white organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 6359-6366.	5.5	38
20	High-performance hybrid white organic light-emitting diodes employing p-type interlayers. Journal of Industrial and Engineering Chemistry, 2015, 27, 240-244.	5.8	19
21	Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems. Organic Electronics, 2014, 15, 2616-2623.	2.6	32
22	Simplified hybrid white organic light-emitting diodes with efficiency/efficiency roll-off/color rendering index/color-stability trade-off. Physica Status Solidi - Rapid Research Letters, 2014, 8, 719-723.	2.4	14
23	Investigation and optimization of each organic layer: A simple but effective approach towards achieving high-efficiency hybrid white organic light-emitting diodes. Organic Electronics, 2014, 15, 926-936.	2.6	36
24	Very-High Color Rendering Index Hybrid White Organic Light-Emitting Diodes with Double Emitting Nanolayers. Nano-Micro Letters, 2014, 6, 335-339.	27.0	34
25	The effect of spacer in hybrid white organic light emitting diodes. Science Bulletin, 2014, 59, 3090-3097.	1.7	14
26	Extremely stable-color flexible white organic light-emitting diodes with efficiency exceeding 100 lm W $<$ sup $>$ â $^{\circ}$ 1 $<$ 1sup $>$. Journal of Materials Chemistry C, 2014, 2, 9836-9841.	5.5	48
27	Simultaneous achievement of low efficiency roll-off and stable color in highly efficient single-emitting-layer phosphorescent white organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 5870-5877.	5.5	23
28	Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness. Journal of Luminescence, 2014, 151, 161-164.	3.1	17
29	Efficient hybrid white organic light-emitting diodes with extremely long lifetime: the effect of n-type interlayer. Scientific Reports, 2014, 4, 7198.	3.3	42
30	Investigation on spacers and structures: A simple but effective approach toward high-performance hybrid white organic light emitting diodes. Synthetic Metals, 2013, 184, 5-9.	3.9	16
31	Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer. Journal of Luminescence, 2013, 142, 35-39.	3.1	22
32	Comprehensive Study on the Electron Transport Layer in Blue Flourescent Organic Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2013, 2, R258-R261.	1.8	24
33	High-Performance Hybrid White Organic Light-Emitting Diodes Comprising Ultrathin Blue and Orange Emissive Layers. Applied Physics Express, 2013, 6, 122101.	2.4	22