Weiguang Ran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4914965/publications.pdf

Version: 2024-02-01

471509 713466 22 877 17 21 citations h-index g-index papers 22 22 22 705 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Open-Framework Structured Material: [Ni(en) ₂] ₃ [Fe(CN) ₆] ₂ as a Cathode Material for Aqueous Sodium- and Potassium-Ion Batteries. ACS Applied Materials & Therfaces, 2022, 14, 16197-16203.	8.0	6
2	Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications. Chemical Engineering Journal, 2021, 406, 127154.	12.7	113
3	Construction of Dualâ€tight Contact Interface in Zâ€scheme System of In ₂ O ₃ /O _V /In ₂ S ₃ for Enhancing Photocatalytic Performance. ChemCatChem, 2021, 13, 2379-2385.	3.7	10
4	Characterizations and photoluminescence properties of a dual-functional La2LiNbO6:Bi3+, Eu3+ phosphor for WLEDs and ratiometric temperature sensing. Journal of Alloys and Compounds, 2021, 865, 158825.	5.5	32
5	Advantageous Occupation of Europium(III) in the B Site of Double-Perovskite Ca $<$ sub $>$ 2 $<$ 1sub $>$ B8â \in 2O $<$ sub $>$ 6 $<$ 1sub $>$ (B = Y, Gd, La; Bâ \in 2 = Sb, Nb) Frameworks for White-Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 7960-7972.	6.7	30
6	Facile Realization of Boosted Nearâ€Infraredâ€Visible Light Driven Photocatalytic Activities of BiOF Nanoparticles through Simultaneously Exploiting Doping and Upconversion Strategy. Advanced Materials Interfaces, 2021, 8, 2100749.	3.7	25
7	Bifunctional application of La ₃ BWO ₉ :Bi ³⁺ ,Sm ³⁺ phosphors with strong orange-red emission and sensitive temperature sensing properties. Dalton Transactions, 2021, 50, 15187-15197.	3.3	18
8	Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications, 2020, 11, 6095.	12.8	129
9	Enhanced Visible Light-Driven Photocatalytic Activities and Photoluminescence Characteristics of BiOF Nanoparticles Determined via Doping Engineering. Inorganic Chemistry, 2020, 59, 11801-11813.	4.0	37
10	Photocatalytic and Thermometric Characteristics of Er ³⁺ â€Activated Bi ₅ IO ₇ Upconverting Microparticles. Advanced Materials Interfaces, 2020, 7, 1902208.	3.7	54
11	Morphology evolution of Eu ³⁺ -activated NaTbF ₄ nanorods: a highly-efficient near-ultraviolet light-triggered red-emitting platform towards application in white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 10802-10809.	5.5	85
12	Infrared excited $Er < sup > 3 + < sup > 7b < sup > 3 + < sup > codoped NaLaMgWO < sub > 6 < sub > phosphors with intense green up-conversion luminescence and excellent temperature sensing performance. Dalton Transactions, 2019, 48, 11382-11390.$	3.3	34
13	Eu ³⁺ -Activated NaGdF ₄ Nanorods for Near-Ultraviolet Light-Triggered Indoor Illumination. ACS Applied Nano Materials, 2019, 2, 4275-4285.	5.0	74
14	Simultaneous bifunctional application of solid-state lighting and ratiometric optical thermometer based on double perovskite LiLaMgWO ₆ :Er ³⁺ thermochromic phosphors. RSC Advances, 2019, 9, 7189-7195.	3.6	25
15	Er ³⁺ -Activated NaLaMgWO ₆ double perovskite phosphors and their bifunctional application in solid-state lighting and non-contact optical thermometry. Dalton Transactions, 2019, 48, 4405-4412.	3.3	74
16	Narrow-band green emission of Eu ²⁺ in a rigid tunnel structure: site occupations, barycenter energy calculations and luminescence properties. Inorganic Chemistry Frontiers, 2019, 6, 3604-3612.	6.0	15
17	Break the Interacting Bridge between Eu3+ lons in the 3D Network Structure of CdMoO4: Eu3+ Bright Red Emission Phosphor. Scientific Reports, 2018, 8, 5936.	3.3	31
18	Enhanced energy transfer from Bi3+ to Eu3+ ions relying on the criss-cross cluster structure in MgMoO4 phosphor. Journal of Luminescence, 2017, 192, 141-147.	3.1	21

#	Article	IF	CITATION
19	Fabrication of ZnWO4:Sm3+, Bi3+, Li+ with tunable white light-emitting properties for W-LEDs. Materials Research Bulletin, 2015, 64, 146-150.	5.2	19
20	A super energy transfer process based S-shaped cluster in ZnMoO ₄ phosphors: theoretical and experimental investigation. Journal of Materials Chemistry C, 2015, 3, 8344-8350.	5.5	18
21	Luminescence properties and energy transfer of CdWO4:Sm3+,Bi3+,M+(M=Li, Na, K) phosphors for white LEDs. Ceramics International, 2015, 41, 4301-4307.	4.8	23
22	Effects of activated Sr 2+ ion content on strong blueâ€emitting Ca 2 Sb 2 O 7 materials for highâ€quality WLED devices. International Journal of Energy Research, 0, , .	4.5	4