Igor Stagljar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4914040/publications.pdf Version: 2024-02-01

	94381	91828
5,413	37	69
citations	h-index	g-index
131	131	8371
docs citations	times ranked	citing authors
	5,413 citations 131 docs citations	5,413 37 citations h-index 131 131 docs citations 131 times ranked

ΙΟΟΡ ΟΤΛΟΙΙΛΡ

#	Article	IF	CITATIONS
1	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	6.0	979
2	Large-scale identification of yeast integral membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12123-12128.	3.3	260
3	Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature, 2012, 489, 585-589.	13.7	228
4	Fundamentals of protein interaction network mapping. Molecular Systems Biology, 2015, 11, 848.	3.2	226
5	Regulation of CD133 by HDAC6 Promotes β-Catenin Signaling to Suppress Cancer Cell Differentiation. Cell Reports, 2012, 2, 951-963.	2.9	161
6	The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nature Methods, 2014, 11, 585-592.	9.0	149
7	In silico prediction of physical protein interactions and characterization of interactome orphans. Nature Methods, 2015, 12, 79-84.	9.0	148
8	Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6. Science Signaling, 2009, 2, ra84.	1.6	140
9	A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Molecular Cell, 2017, 65, 347-360.	4.5	123
10	The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. Journal of Cell Science, 2005, 118, 4261-4269.	1.2	120
11	Two-hybrid technologies in proteomics research. Current Opinion in Biotechnology, 2008, 19, 316-323.	3.3	120
12	Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nature Protocols, 2010, 5, 1281-1293.	5.5	115
13	Analysis of membrane protein interactions using yeast-based technologies. Trends in Biochemical Sciences, 2002, 27, 559-563.	3.7	103
14	FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nature Cell Biology, 2014, 16, 708-715.	4.6	103
15	Mapping Protein-Protein Interactions for the Yeast ABC Transporter Ycf1p by Integrated Split-Ubiquitin Membrane Yeast Two-Hybrid Analysis. Molecular Cell, 2007, 26, 15-25.	4.5	102
16	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	3.2	102
17	Identification of Novel ErbB3-Interacting Factors Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System. Genome Research, 2003, 13, 1744-1753.	2.4	99
18	Mapping the functional yeast ABC transporter interactome. Nature Chemical Biology, 2013, 9, 565-572.	3.9	93

#	Article	IF	CITATIONS
19	Identification of Small Molecule Inhibitors of Pseudomonas aeruginosa Exoenzyme S Using a Yeast Phenotypic Screen. PLoS Genetics, 2008, 4, e1000005.	1.5	84
20	Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. BioTechniques, 2006, 40, 625-644.	0.8	80
21	NLF-1 Delivers a Sodium Leak Channel to Regulate Neuronal Excitability and Modulate Rhythmic Locomotion. Neuron, 2013, 77, 1069-1082.	3.8	78
22	Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40, 4079-4093.	2.6	76
23	Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System. Molecular and Cellular Proteomics, 2008, 7, 1362-1377.	2.5	71
24	Application guide for omics approaches to cell signaling. Nature Chemical Biology, 2015, 11, 387-397.	3.9	69
25	Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Human Molecular Genetics, 2012, 21, 3785-3794.	1.4	66
26	Systematic protein–protein interaction mapping for clinically relevant human <scp>GPCR</scp> s. Molecular Systems Biology, 2017, 13, 918.	3.2	63
27	Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neuroscience, 2010, 11, 33.	0.8	58
28	Analysis of Membrane Protein Complexes Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System. Methods in Molecular Biology, 2009, 548, 247-271.	0.4	54
29	Interactive proteomics research technologies: recent applications and advances. Current Opinion in Biotechnology, 2011, 22, 50-58.	3.3	49
30	The role of parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 in the hippocampus: functional interplay with the adenosinergic system. Journal of Neurochemistry, 2015, 134, 135-146.	2.1	48
31	The Bloom's Syndrome Helicase Interacts Directly with the Human DNA Mismatch Repair Protein hMSH6. Biological Chemistry, 2003, 384, 1155-64.	1.2	47
32	Negative Regulation of the Yeast ABC Transporter Ycf1p by Phosphorylation within Its N-terminal Extension. Journal of Biological Chemistry, 2008, 283, 27079-27088.	1.6	47
33	Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping. Cell Reports, 2017, 20, 2735-2748.	2.9	47
34	KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. Journal of Cell Science, 2009, 122, 2895-2905.	1.2	46
35	Physical and Functional Interaction between the Bloom's Syndrome Gene Product and the Largest Subunit of Chromatin Assembly Factor 1. Molecular and Cellular Biology, 2004, 24, 4710-4719.	1.1	44
36	Protein interactome mining defines melatonin <scp>MT</scp> ₁ receptors as integral component of presynaptic protein complexes of neurons. Journal of Pineal Research, 2016, 60, 95-108.	3.4	42

#	Article	IF	CITATIONS
37	Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nature Communications, 2020, 11, 499.	5.8	42
38	NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS ONE, 2017, 12, e0183774.	1.1	41
39	Yeast as a tool to study bacterial effectors. Current Opinion in Microbiology, 2009, 12, 18-23.	2.3	39
40	The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Scientific Reports, 2017, 7, 9452.	1.6	39
41	Coordination of N-Glycosylation and Protein Translocation across the Endoplasmic Reticulum Membrane by Sss1 Protein. Journal of Biological Chemistry, 2003, 278, 37998-38003.	1.6	38
42	Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability. PLoS ONE, 2015, 10, e0140661.	1.1	36
43	Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes. Molecular Biology of the Cell, 2015, 26, 1119-1128.	0.9	36
44	A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nature Communications, 2021, 12, 1806.	5.8	36
45	Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nature Communications, 2015, 6, 8391.	5.8	35
46	A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. Journal of Molecular Biology, 2015, 427, 2088-2103.	2.0	34
47	Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nature Communications, 2020, 11, 2440.	5.8	33
48	A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nature Chemical Biology, 2020, 16, 577-586.	3.9	30
49	Investigation of Membrane Protein Interactions Using the Split-Ubiquitin Membrane Yeast Two-Hybrid System. Methods in Molecular Biology, 2012, 812, 225-244.	0.4	29
50	The Parkinson's diseaseâ€associated <scp>GPR</scp> 37 receptorâ€mediated cytotoxicity is controlled by its intracellular cysteineâ€rich domain. Journal of Neurochemistry, 2013, 125, 362-372.	2.1	28
51	Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis. Frontiers in Pharmacology, 2017, 8, 997.	1.6	28
52	REEP5 depletion causes sarco-endoplasmic reticulum vacuolization and cardiac functional defects. Nature Communications, 2020, 11, 965.	5.8	28
53	The Rho1 GTPase Acts Together With a Vacuolar Glutathione S-Conjugate Transporter to Protect Yeast Cells From Oxidative Stress. Genetics, 2011, 188, 859-870.	1.2	27
54	The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase Ĩ´. Nucleic Acids Research, 2008, 36, 5166-5179.	6.5	26

#	Article	IF	CITATIONS
55	Strategies for membrane interaction proteomics: No mass spectrometry required. Proteomics, 2012, 12, 1519-1526.	1.3	24
56	Interactive proteomics: what lies ahead?. BioTechniques, 2008, 44, 681-691.	0.8	23
57	Systematic Identification of Oncogenic EGFR Interaction Partners. Journal of Molecular Biology, 2017, 429, 280-294.	2.0	22
58	ATPâ€binding cassette transporters and sterol <i>O</i> â€acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB Journal, 2015, 29, 4682-4694.	0.2	21
59	Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Systems, 2020, 10, 25-38.e10.	2.9	18
60	CHIP-MYTH: A novel interactive proteomics method for the assessment of agonist-dependent interactions of the human l²2-adrenergic receptor. Biochemical and Biophysical Research Communications, 2014, 445, 746-756.	1.0	17
61	The power of OMICs. Biochemical and Biophysical Research Communications, 2016, 479, 607-609.	1.0	17
62	Detecting Membrane Proteinâ€protein Interactions Using the Mammalian Membrane Twoâ€hybrid (MaMTH) Assay. Current Protocols in Chemical Biology, 2017, 9, 38-54.	1.7	17
63	Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent. Behavioural Brain Research, 2015, 288, 103-106.	1.2	15
64	Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca ²⁺ -dependent calmodulin binding. American Journal of Physiology - Cell Physiology, 2016, 310, C808-C820.	2.1	15
65	Finding Partners: Emerging Protein Interaction Technologies Applied to Signaling Networks. Science Signaling, 2003, 2003, pe56-pe56.	1.6	14
66	Using yeast as a model to study membrane proteins. Current Opinion in Nephrology and Hypertension, 2011, 20, 425-432.	1.0	14
67	Systems analysis of the genetic interaction network of yeast molecular chaperones. Molecular Omics, 2018, 14, 82-94.	1.4	14
68	Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies. Nature Communications, 2022, 13, .	5.8	14
69	Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses. Neuroscience Letters, 2017, 638, 162-166.	1.0	13
70	Drugging the undruggable proteins in cancer: A systems biology approach. Current Opinion in Chemical Biology, 2022, 66, 102079.	2.8	13
71	CFTR interactome mapping using the mammalian membrane twoâ€hybrid highâ€throughput screening system. Molecular Systems Biology, 2022, 18, e10629.	3.2	13
72	Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cellular and Molecular Life Sciences, 2018, 75, 4357-4370.	2.4	12

#	Article	IF	CITATIONS
73	Membrane Yeast Two-Hybrid (MYTH) Mapping of Full-Length Membrane Protein Interactions. Cold Spring Harbor Protocols, 2016, 2016, pdb.top077560.	0.2	9
74	Mapping the Phospho-dependent ALK Interactome to Identify Novel Components in ALK Signaling. Journal of Molecular Biology, 2021, 433, 167283.	2.0	9
75	D154Q Mutation does not Alter KRAS Dimerization. Journal of Molecular Biology, 2022, 434, 167392.	2.0	8
76	A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain–Peptide Interactions. ACS Synthetic Biology, 2019, 8, 918-928.	1.9	6
77	Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Molecular Metabolism, 2021, 47, 101185.	3.0	6
78	Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2019, 9, 1085-1102.	0.8	4
79	Protein Interactions of the Mechanosensory Proteins Wsc2 and Wsc3 for Stress Resistance in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2020, 10, 3121-3135.	0.8	4
80	Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis. Scientific Reports, 2021, 11, 7411.	1.6	4
81	Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells. Journal of Molecular Biology, 2021, 433, 167294.	2.0	4
82	Met–HER3 crosstalk supports proliferation via MPZL3 in MET-amplified cancer cells. Cellular and Molecular Life Sciences, 2022, 79, 178.	2.4	4
83	Novel Interactome of Saccharomyces cerevisiae Myosin TypeÂll Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen. G3: Genes, Genomes, Genetics, 2016, 6, 1469-1474.	0.8	3
84	Generation and Validation of MYTH Baits: iMYTH and tMYTH Variants. Cold Spring Harbor Protocols, 2016, pdb.prot087817.	0.2	3
85	MYTH Screening: iMYTH and tMYTH Variants. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot087825.	0.2	3
86	Multiple functions of protein phosphatases in receptor tyrosine kinase signaling revealed by interactome analysis. Molecular and Cellular Oncology, 2017, 4, e1297101.	0.3	3
87	Editorial for "Advances in Protein–Protein Interactions― Methods, 2012, 57, 399.	1.9	1
88	Editorial for â€~â€~Advances in OMICs-based disciplines― Biochemical and Biophysical Research Communications, 2014, 445, 681-682.	1.0	1
89	Detection of Membrane Protein Interactions Using Split Ubiquitin-Based Membrane Yeast Two-Hybrid Technology. Scientific World Journal, The, 2002, 2, 104-105.	0.8	0
90	Omics Approaches Deciphering Molecular Function in Large Biological Systems. Journal of Molecular Biology, 2015, 427, 3351-3355.	2.0	0

#	Article	IF	CITATIONS
91	Testing cancer inhibitors at scale. Nature Biomedical Engineering, 2018, 2, 203-204.	11.6	0
92	Highlights for the 60th anniversary of BBRC. Biochemical and Biophysical Research Communications, 2019, 520, 699-700.	1.0	0