

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913993/publications.pdf Version: 2024-02-01

XIANCVILLI

#	Article	IF	CITATIONS
1	3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new "demulsification-transport―mechanism. Green Energy and Environment, 2023, 8, 1398-1408.	4.7	2
2	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
3	Integration of catalytic capability and pH-responsive wettability in a V _x O _y -based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. Journal of Materials Chemistry A, 2021, 9, 5454-5467.	5.2	11
4	A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS Applied Materials & Interfaces, 2021, 13, 48171-48178.	4.0	2
5	Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. Journal of Materials Chemistry A, 2021, 9, 26127-26134.	5.2	12
6	Crown ether modified membranes for Na ⁺ -responsive controllable emulsion separation suitable for hypersaline environments. Journal of Materials Chemistry A, 2020, 8, 2684-2690.	5.2	32
7	Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsified oil/water separation through a wettability reversal strategy. Applied Surface Science, 2020, 532, 147350.	3.1	4
8	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie - International Edition, 2020, 59, 13437-13443.	7.2	20
9	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie, 2020, 132, 13539-13545.	1.6	Ο
10	A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science, 2020, 579, 412-424.	5.0	41
11	Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020, 241, 116733.	3.9	25
12	Peanut Leaf-Inspired Hybrid Metal–Organic Framework with Humidity-Responsive Wettability: toward Controllable Separation of Diverse Emulsions. ACS Applied Materials & Interfaces, 2020, 12, 6309-6318.	4.0	23
13	Photothermally induced <i>in situ</i> double emulsion separation by a carbon nanotube/poly(<i>N</i> -isopropylacrylamide) modified membrane with superwetting properties. Journal of Materials Chemistry A, 2020, 8, 7677-7686.	5.2	29
14	Lotus- and Mussel-Inspired PDA–PET/PTFE Janus Membrane: Toward Integrated Separation of Light and Heavy Oils from Water. ACS Applied Materials & Interfaces, 2019, 11, 20545-20556.	4.0	62
15	Asymmetric superwetting configuration of Janus membranes based on thiol–ene clickable silane nanospheres enabling on-demand and energy-efficient oil–water remediation. Journal of Materials Chemistry A, 2019, 7, 10047-10057.	5.2	61
16	Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. Chemical Science, 2019, 10, 4089-4096.	3.7	41
17	A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and <i>in situ</i> surfactant removal. Journal of Materials Chemistry A, 2019, 7, 27156-27163.	5.2	38
18	Janus membrane decorated <i>via</i> a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria. Journal of Materials Chemistry A, 2019, 7, 4941-4949.	5.2	82

Xiangyu Li

#	Article	IF	CITATIONS
19	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie - International Edition, 2018, 57, 5740-5745.	7.2	180
20	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie, 2018, 130, 5842-5847.	1.6	13
21	Superwetting copper meshes based on self-organized robust CuO nanorods: efficient water purification for <i>in situ</i> oil removal and visible light photodegradation. Nanoscale, 2018, 10, 4561-4569.	2.8	47
22	Smart Nylon Membranes with pHâ€Responsive Wettability: Highâ€Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactantâ€Stabilized Emulsions. Advanced Materials Interfaces, 2018, 5, 1801179.	1.9	37
23	A smart nano-V ₂ O ₅ /ODA-coated mesh for a co-responsive photo-induced wettability transition and ROS generation for <i>in situ</i> water purification. Journal of Materials Chemistry A, 2018, 6, 18003-18009.	5.2	27
24	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	3.2	134
25	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. Journal of Materials Chemistry A, 2017, 5, 15822-15827.	5.2	55