
Zbigniew Ficek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherence and Anticoherence Induced by Thermal Fields. Entropy, 2022, 24, 692.	1.1	1
2	Enhanced entanglement and asymmetric EPR steering between magnons. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	38
3	Delayed transfer of entanglement to initially populated qubits. Physical Review A, 2020, 102, .	1.0	6
4	Enhancement of magnon-magnon entanglement inside a cavity. Physical Review B, 2020, 101, .	1.1	82
5	Creating a switchable optical cavity with controllable quantum-state mapping between two modes. Scientific Reports, 2018, 8, 14740.	1.6	6
6	Highly directional photon superbunching from a few-atom chain of emitters. Physical Review A, 2018, 98, .	1.0	24
7	Quantum correlations in directional emission. AIP Conference Proceedings, 2018, , .	0.3	2
8	Preparation of a single-photon dark state in a chiral quantum system. Physical Review A, 2017, 95, .	1.0	6
9	Collective Multiatom Spectroscopy. Springer Series in Optical Sciences, 2017, , 109-144.	0.5	0
10	Quantum-Limit Spectroscopy. Springer Series in Optical Sciences, 2017, , .	0.5	11
11	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	1.2	28
12	Collective dynamics and entanglement of two distant atoms embedded into single-negative index material. Optics Express, 2017, 25, 1867.	1.7	3
13	Engineering a squeezed phonon reservoir with a bichromatic driving of a quantum dot. Physical Review A, 2016, 94, .	1.0	9
14	Evidence of indistinguishability and entanglement determined by the energy-time uncertainty principle in a system of two strongly coupled bosonic modes. Physical Review A, 2016, 93, .	1.0	9
15	Mirror and cavity formations by chains of collectively radiating atoms. Physical Review A, 2016, 94, .	1.0	8
16	Radiation pattern of two identical emitters driven by a Laguerre-Gaussian beam: An atom nanoantenna. Physical Review A, 2015, 92, .	1.0	4
17	Dynamics of entangled states in a correlated reservoir. Physica Scripta, 2015, 90, 074020.	1.2	9

18 Coherence and entanglement in a nano-mechanical cavity. , 2014, , .

#	Article	IF	CITATIONS
19	Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system. Physical Review A, 2014, 89, .	1.0	67
20	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	1.0	27
21	Establishment of correlated states in a quantum dot interacting with an acoustic-phonon reservoir. Physical Review A, 2014, 90, .	1.0	5
22	Atoms versus photons as carriers of quantum states. Physical Review A, 2013, 88, .	1.0	15
23	Effect of retardation in the atom–field interaction on entanglement in a double Jaynes–Cummings system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 224006.	0.6	7
24	Two-atom system as a nanoantenna for mode switching and light routing. Physical Review A, 2013, 88, .	1.0	10
25	Transfer of quantum states in a four-qubit system. , 2013, , .		Ο
26	Two-particle dark-state cooling of a nanomechanical resonator. Physical Review A, 2012, 85, .	1.0	11
27	First-order coherence versus entanglement in a nanomechanical cavity. Physical Review A, 2012, 85, .	1.0	31
28	Entanglement transfer between bipartite systems. Physica Scripta, 2012, T147, 014005.	1.2	10
29	Effect of retardation on the dynamics of entanglement between atoms. Physical Review A, 2012, 86, .	1.0	9
30	Probing multipartite entanglement in a coupled Jaynes-Cummings system. Physical Review A, 2012, 86, .	1.0	11
31	Generating two-photon entangled states in a driven two-atom system. Physical Review A, 2011, 84, .	1.0	27
32	Generating coherence and entanglement with a finite-size atomic ensemble in a ring cavity. New Journal of Physics, 2011, 13, 093019.	1.2	8
33	Two coupled Jaynes-Cummings cells. Proceedings of SPIE, 2011, , .	0.8	1
34	Sudden birth and death of entanglement of two atoms in a finite temperature reservoir. Physica Scripta, 2010, T140, 014037.	1.2	18
35	Quantum entanglement and disentanglement of multi-atom systems. Frontiers of Physics in China, 2010, 5, 26-81.	1.0	23
36	Creation of pure multi-mode entangled states in a ring cavity. Optics Communications, 2010, 283, 814-821.	1.0	4

#	Article	IF	CITATIONS
37	Spontaneously created entanglement between two atoms. Optics and Spectroscopy (English) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
38	Sudden birth and sudden death of entanglement. Journal of Computational Methods in Sciences and Engineering, 2010, 10, 265-289.	0.1	5
39	Initial-phase spectroscopy as a control of entangled systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 125506.	0.6	1
40	Conservation rules for entanglement transfer between qubits. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 215505.	0.6	10
41	Multi-mode entanglement ofNharmonic oscillators coupled to a non-Markovian reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 135501.	0.6	14
42	Entanglement created by spontaneously generated coherence. Physical Review A, 2010, 82, .	1.0	23
43	Spectral properties of a thresholdless dressed-atom laser. Journal of Modern Optics, 2010, 57, 1260-1272.	0.6	3
44	Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity. Physical Review A, 2009, 79, .	1.0	48
45	Comment on "Discrepancies in the resonance-fluorescence spectrum calculated with two methods― Physical Review A, 2009, 79, .	1.0	1
46	Cavity-induced giant Kerr nonlinearities in a drivenV-type atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 055507.	0.6	2
47	Thresholdless dressed-atom laser in a photonic band-gap material. Physical Review A, 2009, 79, .	1.0	6
48	Breakdown of the rotating-wave approximation in the description of entanglement of spin-anticorrelated states. Physical Review A, 2009, 79, .	1.0	31
49	Delayed sudden birth of entanglement. Physical Review A, 2008, 77, .	1.0	222
50	The characteristic polynomial of the next-nearest-neighbour qubit chain for single excitations. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 445201.	0.7	0
51	Squeezed single-atom laser in a photonic crystal. Physical Review A, 2008, 78, .	1.0	25
52	Radiative properties of a linear chain of coupled qubits. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S181-S197.	0.6	20
53	The effect of finite bandwidth squeezed light on entanglement creation in the Dicke model. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 289-295.	1.4	4
54	Stationary two-atom entanglement induced by nonclassical two-photon correlations. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S610-S617.	1.4	39

#	Article	IF	CITATIONS
55	Entangling two atoms via spontaneous emission. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S90-S97.	1.4	114
56	Multilevel coherence effects in a two-level atom driven by a trichromatic field. Optics Communications, 2003, 217, 299-309.	1.0	15
57	Quantum interference effects in a cavity QED system. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, 330-340.	1.4	3
58	Entanglement induced by spontaneous emission in spatially extended two-atom systems. Journal of Modern Optics, 2003, 50, 2765-2779.	0.6	50
59	Entanglement and spin squeezing in the two-atom Dicke model. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, L1-L4.	1.4	19
60	Quantum interference in optical fields and atomic radiation. Journal of Modern Optics, 2002, 49, 3-42.	0.6	80
61	The damped and coherently-driven Jaynes\$ndash\$Cummings model. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S328-S336.	1.4	4
62	Amplification on dark transitions in a driven three-level atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 671-680.	0.6	10
63	Effect of quantum interference on a three-level atom driven by two laser fields. Journal of Modern Optics, 2001, 48, 1059-1084.	0.6	12
64	Phase control of subharmonic resonances. Optics Communications, 2000, 182, 143-150.	1.0	7
65	VI Spectroscopy in polychromatic fields. Progress in Optics, 2000, 40, 389-441.	0.4	15
66	Saturation of a two-level atom in polychromatic fields. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 780-785.	1.4	9
67	Quantum interference in a driven two-level atom. Physical Review A, 1999, 60, R4245-R4248.	1.0	36
68	Absorption spectrum of a strongly driven atom in a detuned squeezed vacuum. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 433-441.	1.4	1
69	Atoms in squeezed light fields. Journal of Modern Optics, 1999, 46, 379-474.	0.6	60
70	Anomalous fluorescence spectra in an extremely weak, broadband squeezed vacuum under monochromatic and bichromatic excitation. Optics Communications, 1998, 148, 159-170.	1.0	11
71	Stationary lineshape of a two-level atom in a narrow-bandwidth squeezed vacuum. Optics Communications, 1998, 147, 289-293.	1.0	2
72	The multiphoton AC Stark effect. Optics Communications, 1998, 147, 78-82.	1.0	6

#	Article	IF	CITATIONS
73	Interference pattern with a dark center in resonance fluorescence from two atoms driven by a squeezed vacuum field. Optics Communications, 1998, 153, 245-250.	1.0	7
74	Squeezing-induced complete transparency in two-level systems. Physical Review A, 1998, 57, 2072-2075.	1.0	7
75	Analytical solution for the Mollow and Autler-Townes probe absorption spectra of a three-level atom in a squeezed vacuum. Physical Review A, 1998, 57, 3869-3879.	1.0	8
76	Quantum trajectory simulations of the fluorescence intensity from a two-level atom driven by a multichromatic field. Physical Review A, 1998, 57, 1295-1303.	1.0	7
77	Resonance fluorescence spectrum in a weak squeezed field with an arbitrary bandwidth. Physical Review A, 1998, 58, 1597-1600.	1.0	1
78	Anomalous resonance fluorescence and dressed-state inversion by squeezed light in a Fabry-Pérot microcavity. Physical Review A, 1998, 57, 585-598.	1.0	6
79	Interference pattern with a dark center from two atoms driven by a coherent laser field. Physical Review A, 1998, 58, 748-751.	1.0	15
80	Multiphoton ac Stark effect in a bichromatically driven two-level atom. Physical Review A, 1998, 58, 1296-1309.	1.0	23
81	Two-level atom in a squeezed vacuum with finite bandwidth. Journal of Modern Optics, 1998, 45, 1859-1883.	0.6	21
82	Effect of the Bloch - Siegert shift in a strongly driven transition: asymmetric Autler - Townes profile. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 2735-2745.	0.6	14
83	Phase-dependent fluorescence linewidth narrowing in a three-level atom damped by a finite-bandwidth squeezed vacuum. Physical Review A, 1997, 56, 4125-4138.	1.0	7
84	Nonclassical Excitation in Spectroscopy with Squeezed Light. Physics Today, 1997, 50, 34-38.	0.3	11
85	Spectral linewidth narrowing by a narrow bandwidth squeezed vacuum in a cavity. Journal of Modern Optics, 1997, 44, 1005-1022.	0.6	12
86	Resonance fluorescence and Autler-Townes spectra of a two-level atom driven by two fieldsof equal frequencies. Physical Review A, 1997, 55, 1234-1238.	1.0	20
87	Resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a squeezed vacuum. Physical Review A, 1997, 55, 2340-2347.	1.0	13
88	Driving the driven atom: Spectral signatures. Physical Review A, 1997, 56, R4381-R4384.	1.0	49
89	Pure two-atom squeezed state in spontaneous emission from two non-identical atoms. Optics Communications, 1997, 134, 387-397.	1.0	4
90	Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component. Physical Review A, 1996, 53, 4275-4287.	1.0	75

#	Article	IF	CITATIONS
91	Generation of squeezed light via spontaneous emission from a three-level cascade system. Optics Communications, 1996, 127, 48-54.	1.0	0
92	Probe absorption spectra for driven atomic systems in a narrow bandwidth squeezed vacuum. Physical Review A, 1996, 53, 4439-4467.	1.0	27
93	Resonance fluorescence spectra of three-level atoms in a squeezed vacuum. Physical Review A, 1996, 54, 2379-2390.	1.0	44
94	Asymmetric probe-absorption spectrum and amplification without population inversion in a squeezed vacuum. Physical Review A, 1995, 52, 4126-4136.	1.0	29
95	Two-atom resonance fluorescence in running- and standing-wave laser fields. Physical Review A, 1995, 52, 636-656.	1.0	43
96	Dynamics of the Generation of the Pure Two-atom Squeezed State. Journal of Modern Optics, 1995, 42, 739-746.	0.6	1
97	Effect of a Squeezed Vacuum on Coherent Population Trapping in a Three-level Lambda System. Journal of Modern Optics, 1995, 42, 679-706.	0.6	18
98	Fluorescence intensity and squeezing in a driven three-level atom: Ladder case. Physical Review A, 1995, 51, 4062-4077.	1.0	60
99	Resonance fluorescence of a two-level atom in an off-resonance squeezed vacuum. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 809-824.	0.6	20
100	Squeezing in two-atom resonance fluorescence induced by two-photon coherences. Journal of the European Optical Society Part B: Quantum Optics, 1994, 6, 95-106.	1.2	5
101	Steady-state squeezing in a driven three-level $\hat{\mathbf{b}}$ system. Physical Review A, 1994, 50, 2594-2598.	1.0	15
102	Gain without population inversion in a two-level atom damped by a broadband squeezed vacuum. Optics Communications, 1994, 110, 555-560.	1.0	42
103	Optimum field squeezing from atomic sources: Three-level atoms. Physical Review A, 1994, 50, 2646-2666.	1.0	24
104	Squeezing-induced transparency in a two-level atom. Optics Communications, 1993, 102, 231-237.	1.0	26
105	Generalized Bloch-Siegert Shift in a Squeezed Vacuum. Journal of Modern Optics, 1993, 40, 2333-2337.	0.6	8
106	Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field. Physical Review A, 1993, 48, 3092-3104.	1.0	107
107	Two-Photon Population Inversion by Squeezed Light in a Fabry-Perot Microcavity. Europhysics Letters, 1993, 24, 455-460.	0.7	26
108	Effect of the Dipole-dipole Interaction on the Pure Two-atom Squeezed State. Journal of Modern Optics, 1993, 40, 2339-2349.	0.6	7

#	Article	IF	CITATIONS
109	Scattered and absorption spectra of a system of atoms under squeezed vacuum excitation. Optics Communications, 1992, 88, 494-503.	1.0	5
110	Three-level atom in a broadband squeezed vacuum field. I. General theory. Physical Review A, 1991, 43, 6247-6257.	1.0	97
111	Effect of a broadband squeezed vacuum on two-atom spontaneous emission. Optics Communications, 1991, 82, 130-136.	1.0	16
112	Three-level atom in a broadband squeezed vacuum field. II. Applications. Physical Review A, 1991, 43, 6258-6271.	1.0	51
113	Pairwise atomic states: Two-atom system in a three-dimensional squeezed vacuum field. Physical Review A, 1991, 44, 7759-7776.	1.0	33
114	Quantum beats in two-atom resonance fluorescence. Physical Review A, 1990, 41, 359-368.	1.0	36
115	Spontaneous emission from two atoms interacting with a broadband squeezed vacuum. Physical Review A, 1990, 42, 611-617.	1.0	22
116	Comment on â€~â€~Phase-sensitive population decay: The two-atom Dicke model in a broadband squeezed vacuum''. Physical Review A, 1990, 42, 1826-1828.	1.0	3
117	Two-atom resonance fluorescence spectrum in a squeezed vacuum including the dipole-dipole interaction. Journal of the European Optical Society Part B: Quantum Optics, 1990, 2, 269-286.	1.2	20
118	Amplitude-squared squeezing in two-atom resonance fluorescence. Optics Communications, 1988, 69, 20-24.	1.0	6
119	Quantum Beats in Intensity Correlations of Spontaneous Emission from Two Non-identical Atoms. Journal of Modern Optics, 1988, 35, 81-91.	0.6	8
120	Photon-counting statistics of squeezed states in collective resonance fluorescence. Journal Physics D: Applied Physics, 1988, 21, S131-S133.	1.3	1
121	Quantum beats in photon correlations of spontaneous emission from two nonidentical atoms. Soviet Journal of Quantum Electronics, 1988, 18, 766-769.	0.1	1
122	Enhanced incoherent sum-frequency generation by group velocity difference. Optics Communications, 1987, 62, 403-408.	1.0	4
123	Finite bandwidth excitation effect on the proton correlations in two-atom resonance fluorescence. Optics Communications, 1987, 63, 159-164.	1.0	Ο
124	Photon antibunching and squeezing in resonance fluorescence of two interacting atoms. Physical Review A, 1984, 29, 2004-2011.	1.0	51
125	Squeezed states in resonance fluorescence of two interacting atoms. Optics Communications, 1983, 46, 23-26.	1.0	12
126	Resonance fluorescence spectrum of two atoms, coherently driven by a strong resonant laser field. Optics Communications, 1981, 36, 121-126.	1.0	28

#	Article	IF	CITATIONS
127	Quantum Interference in Atomic and Molecular Systems. , 0, , 79-154.		3
128	Correlated Superposition States in Two-Atom Systems. , 0, , 215-266.		1
129	Problems and Solutions in Quantum Physics. , 0, , .		Ο
130	Quantum Physics for Beginners. , 0, , .		0