Hao Jin

List of Publications by Citations

Source: https://exaly.com/author-pdf/4913847/hao-jin-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45
papers

2,147
citations

24
h-index

46
g-index

46
ext. papers

2,510
ext. citations

6.4
avg, IF
L-index

#	Paper Paper	IF	Citations
45	Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. <i>Advanced Functional Materials</i> , 2016 , 26, 303-310	15.6	499
44	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. <i>Carbon</i> , 2016 , 96, 768-777	10.4	233
43	Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. <i>Small</i> , 2017 , 13, 1701388	11	118
42	Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. <i>Nanoscale</i> , 2015 , 7, 9252-60	7.7	97
41	Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. <i>Carbon</i> , 2015 , 84, 327-334	10.4	90
40	Structure, Optical, and Catalytic Properties of Novel Hexagonal Metastable h-MoO3 Nano- and Microrods Synthesized with Modified Liquid-Phase Processes. <i>Chemistry of Materials</i> , 2010 , 22, 6202-62	08 6	83
39	Thermal transport in the hidden-order state of URu2Si2. <i>Physical Review Letters</i> , 2005 , 94, 156405	7.4	82
38	Thermoelectricity of URu2Si2: Giant Nernst effect in the hidden-order state. <i>Physical Review B</i> , 2004 , 70,	3.3	70
37	Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. <i>ACS Applied Materials & Distriction (Materials & Distriction of Materials & Distriction (Materials & Distriction)</i> The interface of the in	9.5	68
36	Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization. <i>Composites Science and Technology</i> , 2017 , 145, 10-	1846	64
35	Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. <i>Nanoscale</i> , 2019 , 11, 22804-22812	7.7	59
34	Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. <i>Composites Science and Technology</i> , 2016 , 136, 1-9	8.6	55
33	Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. <i>Scientific Reports</i> , 2016 , 6, 18930	4.9	50
32	Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8380-8388	13	44
31	Hierarchical Graphene-Based Films with Dynamic Self-Stiffening for Biomimetic Artificial Muscle. <i>Advanced Functional Materials</i> , 2016 , 26, 7003-7010	15.6	44
30	Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. <i>Journal of Alloys and Compounds</i> , 2010 , 499, 68-74	5.7	41
29	Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature. <i>Polymer</i> , 2013 , 54, 3723-3729	3.9	40

(2008-2017)

28	Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. <i>Carbon</i> , 2017 , 121, 490-501	10.4	38	
27	An experimental apparatus for simultaneously measuring Seebeck coefficient and electrical resistivity from 100 K to 600 K. <i>Review of Scientific Instruments</i> , 2013 , 84, 043903	1.7	37	
26	Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments. <i>Computational Materials Science</i> , 2012 , 60, 224-230	3.2	35	
25	Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 135, 105927	8.4	34	
24	Flexible and easy-to-tune broadband electromagnetic wave absorber based on carbon resistive film sandwiched by silicon rubber/multi-walled carbon nanotube composites. <i>Carbon</i> , 2017 , 121, 544-551	10.4	29	
23	Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson\$ Ratio. <i>Scientific Reports</i> , 2016 , 6, 32989	4.9	25	
22	Nanostructured carbon materials based electrothermal air pump actuators. <i>Nanoscale</i> , 2014 , 6, 6932-8	7.7	24	
21	Rigid vortices in MgB2. Applied Physics Letters, 2003, 83, 2626-2628	3.4	23	
20	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. <i>Carbon</i> , 2019 , 143, 743-751	10.4	22	
19	Low-Temperature Thermoelectric Properties of EAg2Se Synthesized by Hydrothermal Reaction. <i>Journal of Electronic Materials</i> , 2011 , 40, 624-628	1.9	19	
18	A coatable, light-weight, fast-response nanocomposite sensor for thein situacquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves. <i>Smart Materials and Structures</i> , 2016 , 25, 065005	3.4	18	
17	Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?. <i>Nano Research</i> , 2019 , 12, 1571-1577	10	16	
16	A temperature-activated nanocomposite metamaterial absorber with a wide tunability. <i>Nano Research</i> , 2018 , 11, 3931-3942	10	13	
15	Study of the transport properties of La1.85\square\	2.3	13	
14	Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. <i>Composites Science and Technology</i> , 2019 , 174, 42-49	8.6	12	
13	Evidence for a new magnetic field scale in CeCoIn5. <i>Physical Review Letters</i> , 2006 , 96, 077207	7.4	12	
12	Thermal transport property of Ge 34 and d-Ge investigated by molecular dynamics and the Slacks equation. <i>Chinese Physics B</i> , 2010 , 19, 076501	1.2	8	
11	Atomistic simulation of Sittle clathrate alloys. <i>Chemical Physics</i> , 2008 , 344, 299-308	2.3	8	

		HAO JIN	
10	Upper Critical Field and Irreversibility Line Determined by Transport Measurement of the New Superconductor MgB 2. <i>Chinese Physics Letters</i> , 2001 , 18, 823-825	1.8	6
9	Structure and transport properties of Cr doped La214 system. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 314, 263-268	1.3	6
8	Effective fabrication of flexible negative refractive index metamaterials using a simple screen printing method. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5378-5386	7.1	4
7	Magnetic relaxation in high-temperature superconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 255, 183-186	2.3	4
6	Crystal structure and transport properties of La1.75Sr0.25Cu0.9M0.1O4 (M=Cr, Mn, Fe, Co, Ga and Al). <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 315, 124-128	1.3	2
5	Vortex-unbinding and finite-size effects in Tl2Ba2CaCu2O8 thin films. <i>Physical Review B</i> , 2003 , 68,	3.3	1
4	Argument forE [Irelation of high temperature superconductors. <i>Science in China Series A: Mathematics</i> , 2000 , 43, 163-170		1
3	Kondo effect induced suppression of superconductivity in Y1\(\mathbb{P}\)rxBa2Cu3O7\(\mathbb{P}\)hysica C: Superconductivity and Its Applications, 1997 , 282-287, 1395-1396	1.3	
2	Reargument over E ~ j relation of high temperature superconductors. <i>Science in China Series A: Mathematics</i> , 2001 , 44, 513-527		

1.3

E - j relation in the vortex-liquid region of high temperature superconductors. *Physica C: Superconductivity and Its Applications*, **2000**, 341-348, 1309-1310