Luis G Lugones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913564/publications.pdf

Version: 2024-02-01

236925 265206 2,350 47 25 42 citations h-index g-index papers 50 50 50 2117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010, 28, 957-963.	17.5	490
2	How a fungus escapes the water to grow into the air. Current Biology, 1999, 9, 85-88.	3.9	298
3	Transcription factor genes of <i>Schizophyllum commune</i> involved in regulation of mushroom formation. Molecular Microbiology, 2011, 81, 1433-1445.	2.5	127
4	An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology (United Kingdom), 1996, 142, 1321-1329.	1.8	120
5	Introns are necessary for mRNA accumulation in Schizophyllum commune. Molecular Microbiology, 1999, 32, 681-689.	2.5	102
6	A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology (United Kingdom), 1998, 144, 2345-2353.	1.8	90
7	Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycological Research, 1999, 103, 635-640.	2.5	78
8	The blue light receptor complex <scp>WC</scp> â€1/2 of <i><scp>S</scp>chizophyllum commune</i> is involved in mushroom formation and protection against phototoxicity. Environmental Microbiology, 2013, 15, 943-955.	3.8	64
9	RNA-Mediated Gene Silencing in Monokaryons and Dikaryons of Schizophyllum commune. Applied and Environmental Microbiology, 2006, 72, 1267-1269.	3.1	60
10	Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Scientific Reports, 2017, 7, 310.	3.3	59
11	<i>Lecanicillium fungicola</i> : causal agent of dry bubble disease in whiteâ€button mushroom. Molecular Plant Pathology, 2010, 11, 585-595.	4.2	56
12	Inactivation of ku80â€fin the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiology Letters, 2010, 310, 91-95.	1.8	54
13	High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Scientific Reports, 2019, 9, 7632.	3.3	50
14	The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus. Applied Microbiology and Biotechnology, 2016, 100, 7151-7159.	3.6	48
15	Genetic regulation of emergent growth in Schizophyllum commune. Canadian Journal of Botany, 1995, 73, 273-281.	1.1	47
16	The SC15 protein of Schizophyllum commune mediates formation of aerial hyphae and attachment in the absence of the SC3 hydrophobin. Molecular Microbiology, 2004, 53, 707-716.	2.5	47
17	Phleomycin Increases Transformation Efficiency and Promotes Single Integrations in <i>Schizophyllum commune</i> . Applied and Environmental Microbiology, 2009, 75, 1243-1247.	3.1	47
18	The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the woodâ€rot fungus <i>Schizophyllum commune</i> . Environmental Microbiology, 2010, 12, 833-844.	3.8	47

#	Article	IF	CITATIONS
19	Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Applied Microbiology and Biotechnology, 2013, 97, 5535-5543.	3.6	43
20	An efficient gene deletion procedure for the mushroom-forming basidiomycete Schizophyllum commune. World Journal of Microbiology and Biotechnology, 2010, 26, 1919-1923.	3.6	41
21	Iron-dependent stability of the ferredoxin I transcripts from the cyanobacterial strains Synechococcus species PCC 7942 and Anabaena species PCC 7937. Molecular Microbiology, 1993, 7, 429-439.	2.5	37
22	Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express, 2017, 7, 12.	3.0	37
23	In situ hybridisation in filamentous fungi using peptide nucleic acid probes. Fungal Genetics and Biology, 2004, 41, 1099-1103.	2.1	36
24	Cytoplasmic Continuity Revisited: Closure of Septa of the Filamentous Fungus Schizophyllum commune in Response to Environmental Conditions. PLoS ONE, 2009, 4, e5977.	2.5	34
25	Germination of <i>Lecanicillium fungicola</i> in the mycosphere of <i>Agaricus bisporus</i> Environmental Microbiology Reports, 2012, 4, 227-233.	2.4	26
26	Production of (+)-valencene in the mushroom-forming fungus S. commune. Applied Microbiology and Biotechnology, 2014, 98, 5059-5068.	3.6	23
27	Effects of fluorescent Pseudomonas spp. isolated from mushroom cultures on Lecanicillium fungicola. Biological Control, 2012, 63, 210-221.	3.0	22
28	Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete <i>Schizophyllum commune</i> . Applied and Environmental Microbiology, 2009, 75, 4648-4652.	3.1	20
29	Schizophyllum commune has an extensive and functional alternative splicing repertoire. Scientific Reports, 2016, 6, 33640.	3.3	19
30	Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Molecular Genetics and Genomics, 2019, 294, 663-677.	2.1	18
31	The use of mushroom-forming fungi for the production of N-glycosylated therapeutic proteins. Trends in Microbiology, 2009, 17, 439-443.	7.7	17
32	H2O2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost. AMB Express, 2017, 7, 124.	3.0	17
33	15 Fruiting Body Formation in Basidiomycetes. , 2016, , 387-405.		16
34	Interruption of an MSH4 homolog blocks meiosis in metaphase I and eliminates spore formation in Pleurotus ostreatus. PLoS ONE, 2020, 15, e0241749.	2.5	12
35	Hydrophilins in the filamentous fungus <i>Neosartorya fischeri</i> (<i>Aspergillus fischeri</i>) have protective activity against several types of microbial water stress. Environmental Microbiology Reports, 2016, 8, 45-52.	2.4	10
36	The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom <i>Schizophyllum commune</i>). MBio, 2022, 13, .	4.1	10

3

#	Article	IF	CITATIONS
37	Absence of induced resistance in Agaricus bisporus against Lecanicillium fungicola. Antonie Van Leeuwenhoek, 2013, 103, 539-550.	1.7	7
38	Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus. Environmental Microbiology, 2021, 23, 224-238.	3.8	6
39	Identification of alg3 in the mushroom-forming fungus Schizophyllum commune and analysis of the Δalg3 knockout mutant. Glycobiology, 2013, 23, 147-154.	2.5	4
40	Abundant Small Protein ICARUS Inside the Cell Wall of Stress-Resistant Ascospores of Talaromyces macrosporus Suggests a Novel Mechanism of Constitutive Dormancy. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB	T/(3)werloc	k 1 0 Tf 50 61:
41	Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus. PLoS ONE, 2018, 13, e0201090.	2.5	3
42	REMI in Molecular Fungal Biology. Fungal Biology, 2015, , 273-287.	0.6	1
43	Comparison of cell wall polysaccharides in Schizophyllum commune after changing phenotype by mutation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210047.	0.8	1
44	Title is missing!. , 2020, 15, e0241749.		0
45	Title is missing!. , 2020, 15, e0241749.		O
46	Title is missing!. , 2020, 15, e0241749.		0
47	Title is missing!. , 2020, 15, e0241749.		O