
## Jiantie Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913520/publications.pdf Version: 2024-02-01



LIANTIE XII

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highâ€Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogenâ€Doped Graphene Foams.<br>Advanced Materials, 2015, 27, 2042-2048.                                                                                                 | 11.1 | 812       |
| 2  | Metalâ€Free Carbon Materials for CO <sub>2</sub> Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.                                                                                                                          | 11.1 | 558       |
| 3  | Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO <sub>2</sub> Adsorption. Chemistry of Materials, 2014, 26, 2820-2828.                                                                    | 3.2  | 539       |
| 4  | Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018, 47, 4581-4610.                                                     | 18.7 | 455       |
| 5  | Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)â€lon<br>Batteries. Advanced Science, 2017, 4, 1700146.                                                                                           | 5.6  | 390       |
| 6  | Atomic Layerâ€by‣ayer Co <sub>3</sub> O <sub>4</sub> /Graphene Composite for High Performance<br>Lithium″on Batteries. Advanced Energy Materials, 2016, 6, 1501835.                                                                         | 10.2 | 316       |
| 7  | 2D Frameworks of C <sub>2</sub> N and C <sub>3</sub> N as New Anode Materials for Lithiumâ€lon<br>Batteries. Advanced Materials, 2017, 29, 1702007.                                                                                         | 11.1 | 282       |
| 8  | Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nature Communications, 2015,<br>6, 8103.                                                                                                                           | 5.8  | 261       |
| 9  | Highly Rechargeable Lithium O <sub>2</sub> Batteries with a Boron―and Nitrogen odoped<br>Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.                                                           | 7.2  | 260       |
| 10 | Recent Progress in the Design of Advanced Cathode Materials and Battery Models for<br>Highâ€Performance Lithiumâ€X (X = O <sub>2</sub> , S, Se, Te, I <sub>2</sub> , Br <sub>2</sub> ) Batteries.<br>Advanced Materials, 2017, 29, 1606454. | 11.1 | 240       |
| 11 | Cathode materials for next generation lithium ion batteries. Nano Energy, 2013, 2, 439-442.                                                                                                                                                 | 8.2  | 221       |
| 12 | Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance<br>Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.                                                                                           | 7.3  | 213       |
| 13 | The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources, 2013, 225, 172-178.                                                               | 4.0  | 202       |
| 14 | Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye‧ensitized Solar<br>Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.                                                     | 7.8  | 174       |
| 15 | Research progress on vanadium-based cathode materials for sodium ion batteries. Journal of<br>Materials Chemistry A, 2018, 6, 8815-8838.                                                                                                    | 5.2  | 161       |
| 16 | Edgeâ€Selectively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ballâ€Milling<br>and Used as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7317-7323.                                | 11.1 | 160       |
| 17 | Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Materials, 2018, 15, 22-30.                                                                       | 9.5  | 125       |
| 18 | Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li–O <sub>2</sub> Batteries. ACS<br>Energy Letters, 2016, 1, 260-265.                                                                                                       | 8.8  | 116       |

JIANTIE XU

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nitrogenâ€Doped Holey Graphene as an Anode for Lithiumâ€lon Batteries with High Volumetric Energy<br>Density and Long Cycle Life. Small, 2015, 11, 6179-6185.                                                                                                                                         | 5.2 | 115       |
| 20 | Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery<br>Anodes. Nano Letters, 2019, 19, 538-544.                                                                                                                                                              | 4.5 | 113       |
| 21 | Growth of NiCo <sub>2</sub> O <sub>4</sub> @MnMoO <sub>4</sub> Nanocolumn Arrays with<br>Superior Pseudocapacitor Properties. ACS Applied Materials & Interfaces, 2016, 8, 8568-8575.                                                                                                                 | 4.0 | 100       |
| 22 | Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small<br>Methods, 2017, 1, 1700156.                                                                                                                                                                        | 4.6 | 98        |
| 23 | Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality<br>Graphene Sheets and Sandwich-Structured α-Fe <sub>2</sub> O <sub>3</sub> /Graphene Hybrids for<br>High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11025-11034. | 4.0 | 75        |
| 24 | Improved emissions inventory and VOCs speciation for industrial OFP estimation in China. Science of the Total Environment, 2020, 745, 140838.                                                                                                                                                         | 3.9 | 72        |
| 25 | Electrospinning of crystalline MoO <sub>3</sub> @C nanofibers for high-rate lithium storage. Journal of Materials Chemistry A, 2015, 3, 3257-3260.                                                                                                                                                    | 5.2 | 69        |
| 26 | Chevrel Phase Mo <sub>6</sub> T <sub>8</sub> (T = S, Se) as Electrodes for Advanced Energy Storage.<br>Small, 2017, 13, 1701441.                                                                                                                                                                      | 5.2 | 61        |
| 27 | Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries.<br>Electrochimica Acta, 2011, 56, 2201-2205.                                                                                                                                                          | 2.6 | 58        |
| 28 | Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen<br>Evolution Catalysis. ACS Nano, 2018, 12, 1878-1886.                                                                                                                                             | 7.3 | 57        |
| 29 | Growth of MoS <sub>2</sub> @C nanobowls as a lithium-ion battery anode material. RSC Advances, 2015, 5, 92506-92514.                                                                                                                                                                                  | 1.7 | 54        |
| 30 | Layered P2â€Na <sub>0.66</sub> Fe <sub>0.5</sub> Mn <sub>0.5</sub> O <sub>2</sub> Cathode Material for<br>Rechargeable Sodiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 371-374.                                                                                                                      | 1.7 | 52        |
| 31 | Three-dimensional-network Li3V2(PO4)3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes. Journal of Power Sources, 2014, 246, 124-131.                                                                                               | 4.0 | 48        |
| 32 | Amorphous carbon layer contributing Li storage capacity to Nb <sub>2</sub> O <sub>5</sub> @C<br>nanosheets. RSC Advances, 2015, 5, 36104-36107.                                                                                                                                                       | 1.7 | 44        |
| 33 | Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.                                                                                                                             | 3.8 | 44        |
| 34 | Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019, 62, 419-425.                                                                                                                                                       | 8.2 | 44        |
| 35 | Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.                                                                                                                        | 5.8 | 43        |
| 36 | Synthesis, Structure, Electronic, Ionic, and Magnetic Properties of<br>Li <sub>9</sub> V <sub>3</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub><br>Cathode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 8422-8429.                  | 1.5 | 41        |

JIANTIE XU

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | 3D Macroporous Mo <i><sub>x</sub></i> C@N  with Incorporated Mo Vacancies as Anodes for<br>Highâ€Performance Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800040.                                        | 4.6 | 36        |
| 38 | How Cobalt and Iron Doping Determine the Oxygen Evolution Electrocatalytic Activity of NiOOH. Cell<br>Reports Physical Science, 2020, 1, 100077.                                                             | 2.8 | 35        |
| 39 | Co-N-C in porous carbon with enhanced lithium ion storage properties. Chemical Engineering Journal, 2020, 389, 124377.                                                                                       | 6.6 | 34        |
| 40 | General Preparation of Three-Dimensional Porous Metal Oxide Foams Coated with Nitrogen-Doped<br>Carbon for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 17402-17408.               | 4.0 | 33        |
| 41 | Conjugated Polymers Based on Thiazole Flanked Naphthalene Diimide for Unipolar n-Type Organic<br>Field-Effect Transistors. Chemistry of Materials, 2018, 30, 8343-8351.                                      | 3.2 | 30        |
| 42 | Large-scale production of holey graphite as high-rate anode for lithium ion batteries. Journal of<br>Energy Chemistry, 2020, 48, 122-127.                                                                    | 7.1 | 30        |
| 43 | A novel approach to recovery of lithium element and production of holey graphene based on the<br>lithiated graphite of spent lithium ion batteries. Chemical Engineering Journal, 2022, 436, 135011.         | 6.6 | 29        |
| 44 | Synthesis of three-dimensional honeycomb-like Fe3N@NC composites with enhanced lithium storage properties. Carbon, 2022, 192, 162-169.                                                                       | 5.4 | 26        |
| 45 | A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode. Electrochemistry Communications, 2013, 31, 35-38.                                  | 2.3 | 24        |
| 46 | Highly Rechargeable Lithiumâ€CO <sub>2</sub> Batteries with a Boron―and Nitrogenâ€Codoped<br>Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.                                               | 1.6 | 24        |
| 47 | Self-driven hematite-based photoelectrochemical water splitting cells with three-dimensional nanobowl heterojunction and high-photovoltage perovskite solar cells. Materials Today Energy, 2017, 6, 128-135. | 2.5 | 23        |
| 48 | A novel approach to facile synthesis of boron and nitrogen co-doped graphene and its application in lithium oxygen batteries. Energy Storage Materials, 2021, 41, 61-68.                                     | 9.5 | 23        |
| 49 | Preparation and electrochemical properties of Cr-doped Li9V3(P2O7)3(PO4)2 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2011, 56, 6562-6567.                                          | 2.6 | 18        |
| 50 | A novel approach for synthesis of expanded graphite and its enhanced lithium storage properties.<br>Journal of Energy Chemistry, 2021, 59, 292-298.                                                          | 7.1 | 17        |
| 51 | Preparation of a Sb/Cu2Sb/C composite as an anode material for lithium-ion batteries. RSC Advances, 2016, 6, 78959-78962.                                                                                    | 1.7 | 16        |
| 52 | Highly durable aqueous Zn ion batteries based on a Zn anode coated by three-dimensional cross-linked<br>and branch-liked bismuth-PVDF layer. Journal of Colloid and Interface Science, 2022, 617, 422-429.   | 5.0 | 16        |
| 53 | Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today<br>Energy, 2019, 14, 100359.                                                                             | 2.5 | 13        |
| 54 | Study on Vanadium Substitution to Iron in Li2FeP2O7 as Cathode Material for Lithium-ion Batteries.<br>Electrochimica Acta, 2014, 141, 195-202.                                                               | 2.6 | 12        |

JIANTIE XU

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Highly boron-doped holey graphene for lithium oxygen batteries with enhanced electrochemical performance. Carbon, 2022, 189, 404-412.                                                                                            | 5.4 | 12        |
| 56 | Lithium rich and deficient effects in LixCoPO4 (x=0.90, 0.95, 1, 1.05) as cathode material for lithium-ion<br>batteries. Electrochimica Acta, 2013, 88, 865-870.                                                                 | 2.6 | 10        |
| 57 | Highly rechargeable lithium oxygen batteries cathode based on boron and nitrogen co-doped holey graphene. Chemical Engineering Journal, 2022, 428, 131025.                                                                       | 6.6 | 9         |
| 58 | Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability. Journal of Materials Science and Technology, 2022, 107, 165-171.                             | 5.6 | 9         |
| 59 | Oneâ€Pot Purification and Iodination of Waste Kish Graphite into Highâ€Quality Electrocatalyst. Particle<br>and Particle Systems Characterization, 2017, 34, 1600426.                                                            | 1.2 | 8         |
| 60 | Preparation of Li9Cr3(P2O7)3(PO4)2 as cathode material for lithium ion batteries through sol–gel<br>method. Journal of Sol-Gel Science and Technology, 2011, 59, 521-524.                                                        | 1.1 | 7         |
| 61 | High performance lithium ion electrolyte based on a three-dimensional holey graphene framework<br>cross-linked with a polymer. Journal of Materials Chemistry A, O, , .                                                          | 5.2 | 7         |
| 62 | From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials<br>Today Energy, 2022, 26, 100997.                                                                                            | 2.5 | 7         |
| 63 | Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized<br>Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015,<br>25, 1328-1328. | 7.8 | 6         |
| 64 | Edgeâ€NF <sub><i>x</i></sub> ( <i>x</i> =1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium<br>Storage Material. Batteries and Supercaps, 2020, 3, 928-935.                                                           | 2.4 | 6         |
| 65 | Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.                                                                                                                           | 2.3 | 4         |
| 66 | Smoothing the Surface and Improving the Electrochemical Properties of NaxMnO2 by a Wet Chemical<br>Method. Nanomaterials, 2020, 10, 246.                                                                                         | 1.9 | 0         |