
Suneel Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Electron Transfer across a ZnO–MoS ₂ –Reduced Graphene Oxide Heterojunction for Enhanced Sunlightâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 3588-3603.	6.8	162
2	Rational Design and Development of Lanthanide-Doped NaYF ₄ @CdS–Au–RGO as Quaternary Plasmonic Photocatalysts for Harnessing Visible–Near-Infrared Broadband Spectrum. ACS Applied Materials & Interfaces, 2018, 10, 15565-15581.	8.0	156
3	N-doped ZnO–MoS ₂ binary heterojunctions: the dual role of 2D MoS ₂ in the enhancement of photostability and photocatalytic activity under visible light irradiation for tetracycline degradation. Materials Chemistry Frontiers, 2017, 1, 1093-1106.	5.9	125
4	Recyclable, bifunctional composites of perovskite type N-CaTiO ₃ and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Materials Chemistry Frontiers, 2017, 1, 2391-2404.	5.9	124
5	Synergetic effect of MoS ₂ –RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 2016, 40, 5185-5197.	2.8	123
6	ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 2018, 447, 802-815.	6.1	123
7	Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3988-4002.	7.1	123
8	Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein Journal of Nanotechnology, 2017, 8, 1571-1600.	2.8	119
9	Perovskite-structured CaTiO ₃ coupled with g-C ₃ N ₄ as a heterojunction photocatalyst for organic pollutant degradation. Beilstein Journal of Nanotechnology, 2018, 9, 671-685.	2.8	116
10	Defect-Rich MoS ₂ Ultrathin Nanosheets-Coated Nitrogen-Doped ZnO Nanorod Heterostructures: An Insight into in-Situ-Generated ZnS for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 5622-5634.	5.1	109
11	Multifunctional Cu/Ag quantum dots on TiO 2 nanotubes as highly efficient photocatalysts for enhanced solar hydrogen evolution. Journal of Catalysis, 2017, 350, 226-239.	6.2	103
12	Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. Journal of Hazardous Materials, 2019, 367, 694-705.	12.4	90
13	Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews - Science and Engineering, 2020, 62, 346-405.	12.9	90
14	Highly Efficient Visible Light Active 2Dâ€2D Nanocomposites of Nâ€ZnOâ€g ₃ N ₄ fo Photocatalytic Degradation of Diverse Industrial Pollutants. ChemistrySelect, 2018, 3, 1919-1932.	^r 1.5	84
15	Nanocomposite of MoS ₂ -RGO as Facile, Heterogeneous, Recyclable, and Highly Efficient Green Catalyst for One-Pot Synthesis of Indole Alkaloids. ACS Sustainable Chemistry and Engineering, 2017, 5, 8551-8567.	6.7	82
16	Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Materials Chemistry and Physics, 2018, 214, 364-376.	4.0	64
17	A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 2018, 47, 1488-1497.	3.3	58
18	Enhancement of Luminescence Intensity in Red Emitting NaYF ₄ :Yb/Ho/Mn Upconversion Nanophosphors by Variation of Reaction Parameters. Journal of Physical Chemistry C, 2017, 121, 11783-11793.	3.1	57

SUNEEL KUMAR

#	Article	IF	CITATIONS
19	Towards utilization of full solar light spectrum using green plasmonic Au–TiO x photocatalyst at ambient conditions. Surfaces and Interfaces, 2018, 11, 98-106.	3.0	50
20	Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. Journal of Alloys and Compounds, 2017, 724, 481-491.	5.5	49
21	Fabrication of nanoheterostructures of boron doped ZnO-MoS2 with enhanced photostability and photocatalytic activity for environmental remediation applications. Vacuum, 2019, 163, 88-98.	3.5	49
22	Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures. Beilstein Journal of Nanotechnology, 2016, 7, 1684-1697.	2.8	42
23	Sea urchin shaped ZnO coupled with MoS2 and polyaniline as highly efficient photocatalysts for organic pollutant decomposition and hydrogen evolution. Ceramics International, 2021, 47, 10301-10313.	4.8	42
24	2Dâ€2D Nanocomposite of MoS ₂ â€Graphitic Carbon Nitride as Multifunctional Catalyst for Sustainable Synthesis of C3â€Functionalized Indoles. ChemCatChem, 2018, 10, 3121-3132.	3.7	33
25	Clustered Au on TiO ₂ Snowman-Like Nanoassemblies for Photocatalytic Applications. ChemistrySelect, 2016, 1, 2963-2970.	1.5	28
26	Homogeneously embedded Pt nanoclusters on amorphous titania matrix as highly efficient visible light active photocatalyst material. Materials Chemistry and Physics, 2016, 179, 129-136.	4.0	26
27	Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing. ACS Sensors, 2020, 5, 1405-1410.	7.8	17
28	Amorphous titania matrix impregnated with Ag nanoparticles as a highly efficient visible- and sunlight-active photocatalyst material. Materials Technology, 2017, 32, 461-471.	3.0	11
29	Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications. Materials Today: Proceedings, 2016, 3, 1939-1948.	1.8	10
30	Perovskite-Based Materials for Photocatalytic Environmental Remediation. Environmental Chemistry for A Sustainable World, 2019, , 139-165.	0.5	10
31	Gold-carbonaceous materials based heterostructures for gas sensing applications. RSC Advances, 2021, 11, 13674-13699.	3.6	6