List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4913336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Banana seed genetic resources for food security: Status, constraints, and future priorities. Food and Energy Security, 2022, 11, e345.	4.3	6
2	OUP accepted manuscript. , 2022, 10, coab099.		2
3	Highâ€throughput phenotyping reveals differential transpiration behaviour within the banana wild relatives highlighting diversity in drought tolerance. Plant, Cell and Environment, 2022, 45, 1647-1663.	5.7	10
4	Breedbase: a digital ecosystem for modern plant breeding. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	17
5	Datasets from harmonised metabolic phenotyping of root, tuber and banana crop. Data in Brief, 2022, 42, 108041.	1.0	1
6	Comparative study of physicochemical, nutritional, phytochemical, and sensory properties of bread with plantain and soy flours partly replacing wheat flour. Food Science and Nutrition, 2022, 10, 3085-3097.	3.4	4
7	From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown. Journal of Experimental Botany, 2022, 73, 4832-4849.	4.8	5
8	Phylogeography and conservation gaps of Musa balbisiana Colla genetic diversity revealed by microsatellite markers. Genetic Resources and Crop Evolution, 2022, 69, 2515-2534.	1.6	2
9	Arbuscular mycorrhizal fungi community composition, richness and diversity on enset (Ensete) Tj ETQq1 1 0 farming systems. Plant and Soil, 2022, 478, 409-425.	.784314 rgBT 3.7	/Overlock 10 7
10	Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. Annals of Botany, 2021, 127, 7-20.	2.9	27
11	Endâ€user preferences for plantain food products in Nigeria and implications for genetic improvement. International Journal of Food Science and Technology, 2021, 56, 1148-1159.	2.7	13
12	Filling the gaps in gene banks: Collecting, characterizing, and phenotyping wild banana relatives of Papua New Guinea. Crop Science, 2021, 61, 137-149.	1.8	19
13	Conservation status assessment of banana crop wild relatives using species distribution modelling. Diversity and Distributions, 2021, 27, 729-746.	4.1	20
14	Comparative Transcriptome and Expression Profiling of Resistant and Susceptible Banana Cultivars during Infection by Fusarium oxysporum. International Journal of Molecular Sciences, 2021, 22, 3002.	4.1	19
15	Effect of single or dual inoculation of the arbuscular mycorrhizal fungus Glomus mosseae and root-nodulating rhizobacteria on reproduction of the burrowing nematode Radopholus similis on non-leguminous and leguminous banana intercrops. Journal of Plant Diseases and Protection, 2021, 128. 961-971.	2.9	5
16	Seed Set Patterns in East African Highland Cooking Bananas Show Asymmetric Distribution in Bunches and Fruits. Agronomy, 2021, 11, 763.	3.0	6
17	Application of Pollen Germination Media on Stigmas during Pollination Increases Seed Set in East African Highland Cooking Bananas (Musa spp.). Agronomy, 2021, 11, 1085.	3.0	5
18	Genotype X Environment Response of â€~Matooke' Hybrids (Naritas) to Pseudocercospora fijiensis, the Cause of Black Sigatoka in Banana. Agronomy, 2021, 11, 1145.	3.0	5

#	Article	IF	CITATIONS
19	Seed Set Patterns in East African Highland Cooking Bananas Are Dependent on Weather before, during and after Pollination. Horticulturae, 2021, 7, 165.	2.8	0
20	Sources of resistance to <i>Pseudocercospora fijiensis</i> , the cause of black Sigatoka in banana. Plant Pathology, 2021, 70, 1651-1664.	2.4	8
21	Genetic diversity and structure of Musa balbisiana populations in Vietnam and its implications for the conservation of banana crop wild relatives. PLoS ONE, 2021, 16, e0253255.	2.5	11
22	How Does Cultivar, Maturation, and Pre-Treatment Affect Nutritional, Physicochemical, and Pasting Properties of Plantain Flours?. Foods, 2021, 10, 1749.	4.3	4
23	Consumer Preferences and Socioeconomic Factors Decided on Plantain and Plantain-Based Products in the Central Region of Cameroon and Oyo State, Nigeria. Foods, 2021, 10, 1955.	4.3	7
24	Maximizing genetic representation in seed collections from populations of self and cross-pollinated banana wild relatives. BMC Plant Biology, 2021, 21, 415.	3.6	6
25	Traits that define yield and genetic gain in East African highland banana breeding. Euphytica, 2021, 217, 1.	1.2	2
26	Development of the first axillary in vitro shoot multiplication protocol for coconut palms. Scientific Reports, 2021, 11, 18367.	3.3	6
27	Use of timelapse photography to determine flower opening time and pattern in banana (Musa spp.) for efficient hand pollination. Scientific Reports, 2021, 11, 19480.	3.3	0
28	Altitude and management affect soil fertility, leaf nutrient status and Xanthomonas wilt prevalence in enset gardens. Soil, 2021, 7, 1-14.	4.9	13
29	Using seminatural and simulated habitats for seed germination ecology of banana wild relatives. Ecology and Evolution, 2021, 11, 14644-14657.	1.9	1
30	Arbuscular mycorrhizal fungus communities and their response to soil phosphorous differ between wild and domesticated enset (Ensete ventricosum) in Southern Ethiopia. Rhizosphere, 2021, 20, 100444.	3.0	2
31	Effect of Seasonal Drought on the Agronomic Performance of Four Banana Genotypes (Musa spp.) in the East African Highlands. Agronomy, 2021, 11, 4.	3.0	11
32	Continuous Mapping Identifies Loci Associated With Weevil Resistance [Cosmopolites sordidus (Germar)] in a Triploid Banana Population. Frontiers in Plant Science, 2021, 12, 753241.	3.6	3
33	Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach. Journal of Proteomics, 2020, 214, 103632.	2.4	20
34	Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. Plant Journal, 2020, 101, 1258-1268.	5.7	35
35	Variability of provitamin A carotenoids in plantain: Influence of cultivar, bunch type, maturation stage, and location. Journal of Food Composition and Analysis, 2020, 94, 103636.	3.9	7
36	Challenges for Ex Situ Conservation of Wild Bananas: Seeds Collected in Papua New Guinea Have Variable Levels of Desiccation Tolerance. Plants, 2020, 9, 1243.	3.5	17

#	Article	IF	CITATIONS
37	Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. Nature Food, 2020, 1, 599-604.	14.0	32
38	Banana Biomass Estimation and Yield Forecasting from Non-Destructive Measurements for Two Contrasting Cultivars and Water Regimes. Agronomy, 2020, 10, 1435.	3.0	13
39	Physiological and Structural Aspects of In Vitro Somatic Embryogenesis in Abies alba Mill. Forests, 2020, 11, 1210.	2.1	8
40	Significant progressive heterobeltiosis in banana crossbreeding. BMC Plant Biology, 2020, 20, 489.	3.6	8
41	Chromosome Painting in Cultivated Bananas and Their Wild Relatives (Musa spp.) Reveals Differences in Chromosome Structure. International Journal of Molecular Sciences, 2020, 21, 7915.	4.1	17
42	Evaluation of Mchare and Matooke Bananas for Resistance to Fusarium oxysporum f. sp. cubense Race 1. Plants, 2020, 9, 1082.	3.5	8
43	Antiviral and Cytotoxic Activity of Different Plant Parts of Banana (Musa spp.). Viruses, 2020, 12, 549.	3.3	8
44	Canopy cover evolution, diurnal patterns and leaf area index relationships in a Mchare and Cavendish banana cultivar under different soil moisture regimes. Scientia Horticulturae, 2020, 272, 109328.	3.6	17
45	Unlocking the Microbiome Communities of Banana (Musa spp.) under Disease Stressed (Fusarium wilt) and Non-Stressed Conditions. Microorganisms, 2020, 8, 443.	3.6	36
46	Optimizing Soil Fertility Management Strategies to Enhance Banana Production in Volcanic Soils of the Northern Highlands, Tanzania. Agronomy, 2020, 10, 289.	3.0	23
47	Impact and Opportunities of Agroecological Intensification Strategies on Farm Performance: A Case Study of Banana-Based Systems in Central and South-Western Uganda. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	14
48	Metagenomic Insights of the Root Colonizing Microbiome Associated with Symptomatic and Non-Symptomatic Bananas in Fusarium Wilt Infected Fields. Plants, 2020, 9, 263.	3.5	30
49	Antimicrobial Activity of Selected Banana Cultivars Against Important Human Pathogens, Including Candida Biofilm. Foods, 2020, 9, 435.	4.3	22
50	Assessment of metabolic variability and diversity present in leaf, peel and pulp tissue of diploid and triploid Musa spp Phytochemistry, 2020, 176, 112388.	2.9	12
51	Breeding Climate-Resilient Bananas. , 2020, , 91-115.		10
52	Regulation of seed germination by diurnally alternating temperatures in disturbance-adapted banana crop wild relatives (<i>Musa acuminata</i>). Seed Science Research, 2020, 30, 238-248.	1.7	8
53	Overcoming the fertility crisis in bananas (Musa spp.). Burleigh Dodds Series in Agricultural Science, 2020, , 257-306.	0.2	11
54	Bio-protective effect of a root-nodulating Rhizobium etli strain in common bean (Phaseolus vulgaris) against Meloidogyne incognita and Radopholus similis in an in vitro autotrophic tripartite cultureÂsystem. Nematology, 2020, 23, 645-653.	0.6	0

#	Article	IF	CITATIONS
55	Recent advances in banana (<i>musa</i> spp.) biofortification to alleviate vitamin A deficiency. Critical Reviews in Food Science and Nutrition, 2019, 59, 3498-3510.	10.3	24

Association genetics of bunch weight and its component traits in East African highland banana (Musa) Tj ETQq0 0 0 grgBT /Overlock 10 T

57	Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica, 2019, 215, 175.	1.2	16
58	Crossbreeding East African Highland Bananas: Lessons Learnt Relevant to the Botany of the Crop After 21 Years of Genetic Enhancement. Frontiers in Plant Science, 2019, 10, 81.	3.6	40
59	The cryoprotectant PVS2 plays a crucial role in germinating Passiflora ligularis embryos after cryopreservation by influencing the mobilization of lipids and the antioxidant metabolism. Journal of Plant Physiology, 2019, 239, 71-82.	3.5	6
60	Promising High-Yielding Tetraploid Plantain-Bred Hybrids in West Africa. International Journal of Agronomy, 2019, 2019, 1-8.	1.2	19
61	Variability of carotenoids in a Musa germplasm collection and implications for provitamin A biofortification. Food Chemistry: X, 2019, 2, 100024.	4.3	11
62	Effect of paleopolyploidy and allopolyploidy on gene expression in banana. BMC Genomics, 2019, 20, 244.	2.8	22
63	Metabolite profiling characterises chemotypes of Musa diploids and triploids at juvenile and pre-flowering growth stages. Scientific Reports, 2019, 9, 4657.	3.3	13
64	Using Growth and Transpiration Phenotyping Under Controlled Conditions to Select Water Efficient Banana Genotypes. Frontiers in Plant Science, 2019, 10, 352.	3.6	25
65	Heterobeltiosis in Banana and Genetic Gains through Crossbreeding. Proceedings (mdpi), 2019, 36, 193.	0.2	0
66	Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503.	3.6	59
67	Effects of In Vitro Polyploidization on Agronomic Characteristics and Fruit Carotenoid Content; Implications for Banana Genetic Improvement. Frontiers in Plant Science, 2019, 10, 1450.	3.6	9
68	Suitability of existing Musa morphological descriptors to characterize East African highland â€~matooke' bananas. Genetic Resources and Crop Evolution, 2018, 65, 645-657.	1.6	8
69	Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics. Scientific Reports, 2018, 8, 1353.	3.3	34
70	The Plantain Proteome, a Focus on Allele Specific Proteins Obtained from Plantain Fruits. Proteomics, 2018, 18, 1700227.	2.2	10
71	Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and Allele Dosage Effects on Predictive Ability in Banana. Plant Genome, 2018, 11, 170090.	2.8	50
72	Molecular and Cytogenetic Study of East African Highland Banana. Frontiers in Plant Science, 2018, 9, 1371.	3.6	50

RONY SWENNEN

#	Article	IF	CITATIONS
73	Genomics-Assisted Breeding in the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Agriculture (Switzerland), 2018, 8, 89.	3.1	16
74	Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 2017, 26, 801-824.	2.6	108
75	Responses of cassava growth and yield to leaf harvesting frequency and NPK fertilizer in South Kivu, Democratic Republic of Congo. Field Crops Research, 2017, 214, 194-201.	5.1	41
76	Bananas and Plantains (Musa spp.). , 2017, , 219-240.		35
77	Characterization of the formation of somatic embryos from mature zygotic embryos of Passiflora ligularis Juss Plant Cell, Tissue and Organ Culture, 2017, 131, 97-105.	2.3	9
78	Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE, 2017, 12, e0178734.	2.5	36
79	Evolutionary dynamics and biogeography of <scp>M</scp> usaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytologist, 2016, 210, 1453-1465.	7.3	103
80	Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Scientific Reports, 2016, 6, 22583.	3.3	34
81	Tissue regeneration of Abies embryogenic cell lines after 1 year storage in liquid nitrogen. Biologia (Poland), 2016, 71, 93-99.	1.5	7
82	Securing Plant Genetic Resources for Perpetuity through Cryopreservation. Indian Journal of Plant Genetic Resources, 2016, 29, 300.	0.1	8
83	The Shortwave Infrared Bands' Response to Stomatal Conductance in "Conference―Pear Trees (Pyrus)	Tj ETQq1	1 0,784314 r
84	A look behind the screens: Characterization of the HSP70 family during osmotic stress in a non-model crop. Journal of Proteomics, 2015, 119, 10-20.	2.4	19
85	Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell, Tissue and Organ Culture, 2015, 120, 117-125.	2.3	32
86	Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. International Journal of Applied Earth Observation and Geoinformation, 2015, 39, 9-17.	2.8	27
87	Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology, 2015, 71, 432-441.	0.7	43
88	Data for the characterization of the HSP70 family during osmotic stress in banana, a non-model crop. Data in Brief, 2015, 3, 78-84.	1.0	10
89	Cryopreservation of Bituminaria bituminosa varieties and hybrids. Cryobiology, 2015, 71, 279-285.	0.7	3
90	Molecular and Cytogenetic Characterization of Wild Musa Species. PLoS ONE, 2015, 10, e0134096.	2.5	36

RONY SWENNEN

#	Article	IF	CITATIONS
91	Evaluation of four different strategies to characterize plasma membrane proteins from banana roots. Ciencia E Agrotecnologia, 2014, 38, 424-434.	1.5	1
92	Cryopreservation of <i>Byrsonima intermedia</i> embryos followed by room temperature thawing. Acta Scientiarum - Agronomy, 2014, 36, 309.	0.6	5
93	Assessment of RNAi-induced silencing in banana (Musa spp.). BMC Research Notes, 2014, 7, 655.	1.4	9
94	From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnology Advances, 2014, 32, 158-169.	11.7	135
95	Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. Journal of Proteomics, 2014, 98, 99-111.	2.4	46
96	Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L. International Journal of Molecular Sciences, 2013, 14, 4912-4933.	4.1	39
97	Expression of a rice chitinase gene in transgenic banana (â€~Gros Michel', AAA genome group) confers resistance to black leaf streak disease. Transgenic Research, 2013, 22, 117-130.	2.4	93
98	Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Frontiers in Plant Science, 2012, 3, 176.	3.6	96
99	Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Molecular Breeding, 2012, 30, 1237-1252.	2.1	64
100	Thermotherapy, Chemotherapy, and Meristem Culture in Banana. Methods in Molecular Biology, 2012, 11013, 419-433.	0.9	13
101	Long-term maintenance of Pinus nigra embryogenic cultures through cryopreservation. Acta Physiologiae Plantarum, 2012, 34, 227-233.	2.1	15
102	Physiological interpretation of a hyperspectral time series in a citrus orchard. Agricultural and Forest Meteorology, 2011, 151, 1002-1015.	4.8	22
103	Seasonal variation in canopy reflectance and its application to determine the water status and water use by citrus trees in the Western Cape, South Africa. Agricultural and Forest Meteorology, 2011, 151, 1035-1044.	4.8	22
104	Structure and regulation of the Asr gene family in banana. Planta, 2011, 234, 785-798.	3.2	59
105	The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry, 2011, 72, 1243-1250.	2.9	33
106	Did backcrossing contribute to the origin of hybrid edible bananas?. Annals of Botany, 2010, 106, 849-857.	2.9	79
107	Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theoretical and Applied Genetics, 2010, 121, 1381-1389.	3.6	65
108	Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants. Planta, 2010, 231, 1113-1125.	3.2	24

7

RONY SWENNEN

#	Article	IF	CITATIONS
109	In planta PCR-based detection of early infection of plant-parasitic nematodes in the roots: a step towards the understanding of infection and plant defence. European Journal of Plant Pathology, 2010, 128, 343-351.	1.7	14
110	2â€Ð DIGE reveals changes in wheat xylanase inhibitor protein families due to <i>Fusarium graminearum</i> Δ <i>Tri5</i> infection and grain development. Proteomics, 2010, 10, 2303-2319.	2.2	28
111	Off-nadir Viewing for Reducing Spectral Mixture Issues in Citrus Orchards. Photogrammetric Engineering and Remote Sensing, 2010, 76, 1261-1274.	0.6	8
112	Sugar-Mediated Acclimation: The Importance of Sucrose Metabolism in Meristems. Journal of Proteome Research, 2010, 9, 5038-5046.	3.7	30
113	Evaluation and Normalization of Cloud Obscuration Related BRDF Effects in Field Spectroscopy. Remote Sensing, 2009, 1, 496-518.	4.0	6
114	Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genomics, 2009, 10, 436.	2.8	56
115	Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biology, 2009, 9, 77.	3.6	26
116	The potential of high-resolution BAC-FISH in banana breeding. Euphytica, 2009, 166, 431-443.	1.2	25
117	Genetic variability in Musa fruit provitamin A carotenoids, lutein and mineral micronutrient contents. Food Chemistry, 2009, 115, 806-813.	8.2	94
118	A quantitative portrait of three xylanase inhibiting protein families in different wheat cultivars using 2D-DIGE and multivariate statistical tools. Journal of Proteomics, 2009, 72, 484-500.	2.4	15
119	A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques. Remote Sensing of Environment, 2009, 113, 2560-2573.	11.0	77
120	Site requirements of the endangered rosewood Dalbergia oliveri in a tropical deciduous forest in northern Thailand. Forest Ecology and Management, 2009, 259, 117-123.	3.2	11
121	Adventitious shoot formation is not inherent to micropropagation of banana as it is in maize. Plant Cell, Tissue and Organ Culture, 2008, 95, 321-332.	2.3	15
122	Proteome analysis of nonâ€model plants: A challenging but powerful approach. Mass Spectrometry Reviews, 2008, 27, 354-377.	5.4	180
123	Functional genomics in a non-model crop: transcriptomics or proteomics?. Physiologia Plantarum, 2008, 133, 117-130.	5.2	50
124	Sampling Strategies and Variability in Fruit Pulp Micronutrient Contents of West and Central African Bananas and Plantains (Musa Species). Journal of Agricultural and Food Chemistry, 2007, 55, 2633-2644.	5.2	64
125	Banana (Musa spp.) as a model to study the meristem proteome: Acclimation to osmotic stress. Proteomics, 2007, 7, 92-105.	2.2	110
126	Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiologia Plantarum, 2007, 129, 766-774.	5.2	60

#	Article	IF	CITATIONS
127	Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiologia Plantarum, 2006, 128, 80-94.	5.2	52
128	Activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase in roots of banana (Musa) Tj ETQq0 (similis. Nematology, 2006, 8, 201-209.	0 rgBT /0 0.6	Overlock 10 16
129	Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation. Cryo-Letters, 2002, 23, 345-52.	0.3	12
130	Variability in storage potential of banana shoot cultures under medium term storage conditions. Plant Cell, Tissue and Organ Culture, 1995, 42, 269-274.	2.3	38
131	Genetic Transformation of Banana and Plantain (Musa spp.) via Particle Bombardment. Nature Biotechnology, 1995, 13, 481-485.	17.5	138
132	Transient gene expression in electroporated banana (Musa spp., cv. ?Bluggoe?, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Reports, 1994, 13, 262-6.	5.6	73
133	Physicochemical Studies on Starches Isolated from Plantain Cultivars, Plantain Hybrids and Cooking Bananas, Starch/Staerke, 1992, 44, 121-128,	2.1	45