Andrey G Korshunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4912593/publications.pdf

Version: 2024-02-01

259 papers

46,649 citations

102 h-index 206 g-index

273 all docs

273 docs citations

times ranked

273

33593 citing authors

#	Article	IF	Citations
1	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.	13.7	2,129
2	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	13.7	1,966
3	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
4	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	7.7	1,551
5	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	3.9	1,536
6	Medulloblastoma Comprises Four Distinct Molecular Variants. Journal of Clinical Oncology, 2011, 29, 1408-1414.	0.8	1,131
7	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	7.7	933
8	Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 397-405.	3.9	914
9	Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathologica, 2008, 116, 597-602.	3.9	910
10	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	3.9	863
11	K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 2012, 124, 439-447.	3.9	799
12	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
13	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	13.7	765
14	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
15	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	13.5	743
16	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	13.5	702
17	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	9.4	674
18	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	7.7	633

#	Article	IF	CITATIONS
19	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	7.7	627
20	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	12.8	560
21	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	13.7	521
22	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	13.7	520
23	<scp>I</scp> nternational <scp>S</scp> ociety of <scp>N</scp> europathologyâ€ <scp>H</scp> aarlem <scp>C</scp> onsensus <scp>G</scp> uidelines for <scp>N</scp> ervous <scp>S</scp> ystem <scp>T</scp> umor <scp>C</scp> lassification and <scp>G</scp> rading. Brain Pathology, 2014, 24, 429-435.	2.1	499
24	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	7.7	494
25	Characterization of R132H Mutationâ€specific IDH1 Antibody Binding in Brain Tumors. Brain Pathology, 2010, 20, 245-254.	2.1	463
26	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	7.7	438
27	BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. Journal of Clinical Investigation, 2008, 118, 1739-1749.	3.9	437
28	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	0.8	381
29	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	13.7	378
30	ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated―diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathologica, 2015, 129, 133-146.	3.9	378
31	Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 2012, 124, 615-625.	3.9	376
32	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	13.7	376
33	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	13.5	348
34	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	3.9	318
35	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	13.7	318
36	Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathologica, 2018, 136, 181-210.	3.9	308

#	Article	IF	Citations
37	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	5.1	307
38	ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathologica, 2013, 126, 443-451.	3.9	304
39	Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathologica, 2018, 136, 153-166.	3.9	298
40	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	3.9	277
41	Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the <i>MYC</i> and <i>MYCN</i> Loci. Journal of Clinical Oncology, 2009, 27, 1627-1636.	0.8	274
42	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	5.1	274
43	IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathologica, 2015, 129, 867-873.	3.9	272
44	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	3.9	271
45	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
46	An Animal Model of MYC-Driven Medulloblastoma. Cancer Cell, 2012, 21, 155-167.	7.7	267
47	A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nature Communications, 2015, 6, 10001.	5.8	266
48	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266
49	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
50	The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology, 2012, 8, 340-351.	4.9	261
51	Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathologica, 2009, 118, 401-405.	3.9	255
52	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	3.9	254
53	Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathologica, 2013, 125, 659-669.	3.9	250
54	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	3.9	244

#	Article	IF	Citations
55	Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 2015, 6, 7391.	5.8	244
56	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	7.7	241
57	Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathologica, 2015, 130, 407-417.	3.9	237
58	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	5.8	237
59	BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature, 2013, 497, 624-627.	13.7	230
60	Adult Medulloblastoma Comprises Three Major Molecular Variants. Journal of Clinical Oncology, 2011, 29, 2717-2723.	0.8	215
61	Identification of Gains on 1q and Epidermal Growth Factor Receptor Overexpression as Independent Prognostic Markers in Intracranial Ependymoma. Clinical Cancer Research, 2006, 12, 2070-2079.	3.2	212
62	Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 763-774.	3.9	211
63	Molecular Staging of Intracranial Ependymoma in Children and Adults. Journal of Clinical Oncology, 2010, 28, 3182-3190.	0.8	210
64	Genomic and Protein Expression Profiling Identifies CDK6 As Novel Independent Prognostic Marker in Medulloblastoma. Journal of Clinical Oncology, 2005, 23, 8853-8862.	0.8	207
65	Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathologica, 2016, 131, 903-910.	3.9	203
66	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathologica, 2018, 136, 211-226.	3.9	199
67	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	3.9	195
68	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	3.9	191
69	Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.	3.9	190
70	Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nature Medicine, 2016, 22, 1314-1320.	15,2	183
71	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	3.9	180
72	Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathologica, 2014, 128, 561-571.	3.9	176

#	Article	IF	CITATIONS
73	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	3.2	175
74	Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncology, 2014, 16, 1408-1416.	0.6	175
75	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	13.7	170
76	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	3.9	169
77	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	3.9	168
78	Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 2016, 131, 137-146.	3.9	162
79	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	0.8	160
80	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	7.7	157
81	Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	5.1	151
82	The Next Generation of Glioma Biomarkers: MGMT Methylation, BRAF Fusions and IDH1 Mutations. Brain Pathology, 2011, 21, 74-87.	2.1	150
83	Gene Expression Patterns in Ependymomas Correlate with Tumor Location, Grade, and Patient Age. American Journal of Pathology, 2003, 163, 1721-1727.	1.9	149
84	Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncology, The, 2012, 13, 838-848.	5.1	148
85	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	3.9	146
86	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	7.7	146
87	H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathologica, 2017, 134, 507-516.	3.9	144
88	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	0.8	143
89	Microarray-Based Screening for Molecular Markers in Medulloblastoma Revealed STK15 as Independent Predictor for Survival. Cancer Research, 2004, 64, 3103-3111.	0.4	139
90	Adult and Pediatric Medulloblastomas Are Genetically Distinct and Require Different Algorithms for Molecular Risk Stratification. Journal of Clinical Oncology, 2010, 28, 3054-3060.	0.8	136

#	Article	IF	Citations
91	Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas. Clinical Cancer Research, 2011, 17, 4650-4660.	3.2	135
92	Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathologica, 2010, 120, 253-260.	3.9	129
93	Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathologica, 2016, 132, 149-151.	3.9	127
94	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	3.9	125
95	The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era. Cancer, 2004, 100, 1230-1237.	2.0	124
96	A biobank of patient-derived pediatric brain tumor models. Nature Medicine, 2018, 24, 1752-1761.	15.2	124
97	Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival. Cell Stem Cell, 2014, 15, 185-198.	5.2	123
98	Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nature Communications, 2017, 8, 14758.	5.8	118
99	Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathologica, 2018, 136, 239-253.	3.9	118
100	Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathologica, 2014, 128, 733-741.	3.9	116
101	LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathologica, 2012, 124, 875-881.	3.9	115
102	Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metabolism, 2019, 30, 274-289.e5.	7.2	115
103	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	9.4	112
104	HD-MB03 is a novel GroupÂ3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. Journal of Neuro-Oncology, 2012, 110, 335-348.	1.4	110
105	Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica, 2009, 117, 457-464.	3.9	106
106	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	7.7	104
107	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	3.9	104
108	MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathologica, 2019, 138, 1075-1089.	3.9	104

#	Article	IF	Citations
109	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	0.8	100
110	Epithelioid Glioblastomas and Anaplastic Epithelioid Pleomorphic Xanthoastrocytomas—Same Entity or First Cousins?. Brain Pathology, 2016, 26, 215-223.	2.1	95
111	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	13.7	94
112	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	13.7	94
113	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	13.5	93
114	Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathology, 2018, 28, 656-662.	2.1	89
115	MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathologica, 2012, 123, 501-513.	3.9	87
116	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	3.9	86
117	Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathologica, 2013, 126, 291-301.	3.9	84
118	Molecular diagnostics of CNS embryonal tumors. Acta Neuropathologica, 2010, 120, 553-566.	3.9	83
119	Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathologica, 2020, 139, 193-209.	3.9	83
120	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	3.9	80
121	A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 2011, 122, 637-650.	3.9	77
122	Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of the CDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes and Cancer, 2007, 46, 839-851.	1.5	76
123	Functional characterization of a <i>BRAF</i> insertion mutant associated with pilocytic astrocytoma. International Journal of Cancer, 2011, 129, 2297-2303.	2.3	75
124	A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of <i>EGFR</i> . Neuro-Oncology, 2021, 23, 34-43.	0.6	75
125	Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathologica, 2015, 130, 419-434.	3.9	74
126	Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. Cell Reports, 2019, 29, 2338-2354.e7.	2.9	74

#	Article	IF	CITATIONS
127	The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. American Journal of Pathology, 2012, 181, 1762-1772.	1.9	73
128	Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-Oncology, 2013, 15, 1644-1651.	0.6	73
129	Integrated molecular characterization of <i><i><i><scp>IDH</scp></i>i>â€mutant glioblastomas. Neuropathology and Applied Neurobiology, 2019, 45, 108-118.</i></i>	1.8	68
130	An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. Journal of Clinical Investigation, 2011, 121, 1344-1348.	3.9	68
131	Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro-Oncology, 2011, 13, 866-879.	0.6	67
132	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	13.5	67
133	Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. Neuro-Oncology, 2016, 18, 790-796.	0.6	67
134	Immunohistochemical markers for intracranial ependymoma recurrence. Journal of the Neurological Sciences, 2000, 177, 72-82.	0.3	66
135	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	3.9	66
136	Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathologica Communications, 2015, 3, 22.	2.4	66
137	Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nature Communications, 2018, 9, 4760.	5 . 8	66
138	YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nature Communications, 2019, 10, 3914.	5.8	65
139	Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8.	7.7	65
140	Immunohistochemical markers for prognosis of ependymal neoplasms. Journal of Neuro-Oncology, 2002, 58, 255-270.	1.4	64
141	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.4	62
142	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	3.9	60
143	FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO Journal, 2016, 35, 2192-2212.	3.5	58
144	Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1â€deficient nonâ€rhabdoid tumor with favorable longâ€term outcome. Brain Pathology, 2017, 27, 411-418.	2.1	58

#	Article	IF	Citations
145	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	0.8	58
146	FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathologica, 2018, 136, 293-302.	3.9	56
147	The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clinical Cancer Research, 2019, 25, 1851-1866.	3.2	55
148	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	3.9	52
149	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.4	51
150	Primary intracranial sarcomas with DICER1 mutation often contain prominent eosinophilic cytoplasmic globules and can occur in the setting of neurofibromatosis type 1. Acta Neuropathologica, 2019, 137, 521-525.	3.9	51
151	Diffuse glioneuronal tumour with oligodendrogliomaâ€like features and nuclear clusters (DGONC) – a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathology and Applied Neurobiology, 2020, 46, 422-430.	1.8	51
152	Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Modern Pathology, 2005, 18, 1258-1263.	2.9	50
153	Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathologica, 2020, 139, 243-257.	3.9	50
154	Overcoming multiple drug resistance mechanisms in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 57.	2.4	49
155	HGNET-BCOR Tumors of the Cerebellum. American Journal of Surgical Pathology, 2017, 41, 1254-1260.	2.1	49
156	Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nature Communications, 2020, 11, 6434.	5.8	48
157	Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathologica, 2006, 111, 465-474.	3.9	47
158	Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia, 2017, 31, 2048-2056.	3.3	47
159	ETMR: a tumor entity in its infancy. Acta Neuropathologica, 2020, 140, 249-266.	3.9	47
160	Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro-Oncology, 2021, 23, 1360-1370.	0.6	46
161	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	3.9	45
162	Hedgehog-mediated regulation of PPARÎ ³ controls metabolic patterns in neural precursors and shh-driven medulloblastoma. Acta Neuropathologica, 2012, 123, 587-600.	3.9	43

#	Article	IF	CITATIONS
163	The Shh Receptor Boc Promotes Progression of Early Medulloblastoma to Advanced Tumors. Developmental Cell, 2014, 31, 34-47.	3.1	43
164	Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene, 2017, 36, 5231-5242.	2.6	43
165	Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA. Acta Neuropathologica, 2019, 137, 837-846.	3.9	43
166	Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget, 2017, 8, 11460-11479.	0.8	43
167	Telomere dysfunction and chromothripsis. International Journal of Cancer, 2016, 138, 2905-2914.	2.3	42
168	Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathologica, 2019, 138, 827-835.	3.9	42
169	Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes and Cancer, 2006, 45, 401-410.	1.5	41
170	Nestin Expression Identifies Ependymoma Patients with Poor Outcome. Brain Pathology, 2012, 22, 848-860.	2.1	40
171	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	3.2	40
172	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	0.8	40
173	Papillary Tumor of the Pineal Region: A Distinct Molecular Entity. Brain Pathology, 2016, 26, 199-205.	2.1	39
174	Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-Oncology, 2017, 19, 1607-1617.	0.6	39
175	Desmoplastic Infantile Ganglioglioma/Astrocytoma (DIG/DIA) Are Distinct Entities with Frequent BRAFV600 Mutations. Molecular Cancer Research, 2018, 16, 1491-1498.	1.5	39
176	Droplet digital PCR is a powerful technique to demonstrate frequent <i>FGFR1</i> duplication in dysembryoplastic neuroepithelial tumors. Oncotarget, 2017, 8, 2104-2113.	0.8	39
177	Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology, 2015, 35, 538-544.	0.7	38
178	DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathologica, 2017, 134, 965-967.	3.9	38
179	A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nature Medicine, 2017, 23, 1191-1202.	15.2	38
180	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	2.4	37

#	Article	IF	CITATIONS
181	Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile. Acta Neuropathologica, 2018, 136, 339-343.	3.9	37
182	Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathologica Communications, 2019, 7, 163.	2.4	37
183	Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathologica, 2021, 141, 605-617.	3.9	36
184	PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathologica, 2021, 142, 841-857.	3.9	36
185	Distinct Histomorphology in Molecular Subgroups of Glioblastomas in Young Patients. Journal of Neuropathology and Experimental Neurology, 2016, 75, 408-414.	0.9	35
186	CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model. Oncogene, 2021, 40, 396-407.	2.6	35
187	The Transcription Factor Evi-1 Is Overexpressed, Promotes Proliferation, and Is Prognostically Unfavorable in Infratentorial Ependymomas. Clinical Cancer Research, 2011, 17, 3631-3637.	3.2	34
188	Somatic mutations of <i>DICER1</i> and <i>KMT2D</i> are frequent in intraocular medulloepitheliomas. Genes Chromosomes and Cancer, 2016, 55, 418-427.	1.5	34
189	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3392-3397.	3.3	34
190	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	3.9	34
191	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	3.9	33
192	Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells. American Journal of Pathology, 2016, 186, 446-459.	1.9	32
193	Telomerase activation in posterior fossa group A ependymomas is associated with dismal prognosis and chromosome 1q gain. Neuro-Oncology, 2017, 19, 1183-1194.	0.6	31
194	DNA methylation profiling is a method of choice for molecular verification of pediatric WNT-activated medulloblastomas. Neuro-Oncology, 2019, 21, 214-221.	0.6	31
195	Update on molecular and genetic alterations in adult medulloblastoma. Memo - Magazine of European Medical Oncology, 2012, 5, 228-232.	0.3	29
196	Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas. Modern Pathology, 2018, 31, 1490-1501.	2.9	29
197	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	5.8	29
198	Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC. American Journal of Ophthalmology, 2015, 159, 1065-1074.e1.	1.7	28

#	Article	IF	Citations
199	Nestin Mediates Hedgehog Pathway Tumorigenesis. Cancer Research, 2016, 76, 5573-5583.	0.4	28
200	Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathologica, 2020, 140, 881-891.	3.9	28
201	Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with loss of morphological but retained genetic key features during progression. Acta Neuropathologica, 2011, 122, 787-790.	3.9	27
202	Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget, 2016, 7, 61860-61873.	0.8	27
203	Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells. Blood Advances, 2019, 3, 1092-1102.	2.5	25
204	Stepwise accumulation of distinct genomic aberrations in a patient with progressively metastasizing ependymoma. Genes Chromosomes and Cancer, 2009, 48, 229-238.	1.5	24
205	Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta Neuropathologica, 2021, 142, 179-189.	3.9	24
206	Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nature Communications, 2021, 12, 5530.	5.8	24
207	Accumulation of genomic aberrations during clinical progression of medulloblastoma. Acta Neuropathologica, 2008, 116, 383-390.	3.9	23
208	Molecular analysis of pediatric CNS-PNET revealed nosologic heterogeneity and potent diagnostic markers for CNS neuroblastoma with FOXR2-activation. Acta Neuropathologica Communications, 2021, 9, 20.	2.4	23
209	Molecular approaches to ependymoma. Current Opinion in Neurology, 2012, 25, 745-750.	1.8	22
210	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	0.6	22
211	Emerging Insights into the Ependymoma Epigenome. Brain Pathology, 2013, 23, 206-209.	2.1	21
212	Molecular characterization of medulloblastomas with extensive nodularity (MBEN). Acta Neuropathologica, 2018, 136, 303-313.	3.9	20
213	An essential role for p38 MAPK in cerebellar granule neuron precursor proliferation. Acta Neuropathologica, 2012, 123, 573-586.	3.9	19
214	Long-term survival in a case of ETANTR with histological features of neuronal maturation after therapy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 466, 603-607.	1.4	19
215	Differential nuclear <scp>ATRX</scp> expression in sarcomas. Histopathology, 2016, 68, 738-745.	1.6	19
216	Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathologica, 2022, 143, 263-281.	3.9	18

#	Article	IF	CITATIONS
217	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	3.9	17
218	Functional loss of a noncanonical BCOR–PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes and Development, 2020, 34, 1161-1176.	2.7	16
219	GOPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug target in a variety of glioma types. Acta Neuropathologica, 2021, 142, 1065-1069.	3.9	16
220	Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow. Methods, 2017, 114, 60-73.	1.9	15
221	Integrating Tenascin-C protein expression and 1q25 copy number status in pediatric intracranial ependymoma prognostication: A new model for risk stratification. PLoS ONE, 2017, 12, e0178351.	1.1	15
222	Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain Pathology, 2016, 26, 506-516.	2.1	14
223	Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age. Oncotarget, 2015, 6, 31844-31856.	0.8	14
224	Novel oncogene amplifications in tumors from a family with Li–Fraumeni syndrome. Genes Chromosomes and Cancer, 2009, 48, 558-568.	1.5	13
225	DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. Journal of Neuro-Oncology, 2012, 109, 415-423.	1.4	13
226	Transcriptional profiling of medulloblastoma with extensive nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent prognostic marker. Acta Neuropathologica, 2020, 139, 583-596.	3.9	13
227	A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers, 2021, 13, 230.	1.7	13
228	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	0.6	12
229	Gain of 12p encompassing CCND2 is associated with gemistocytic histology in IDH mutant astrocytomas. Acta Neuropathologica, 2017, 133, 325-327.	3.9	12
230	Accurate calling of <i>KIAA1549â€BRAF</i> fusions from DNA of human brain tumours using methylation arrayâ€based copy number and gene panel sequencing data. Neuropathology and Applied Neurobiology, 2021, 47, 406-414.	1.8	12
231	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	3.9	12
232	Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathologica Communications, 2022, 10, 5.	2.4	12
233	Sorafenib Plus Valproic Acid for Infant Spinal Glioblastoma. Journal of Pediatric Hematology/Oncology, 2010, 32, 511-514.	0.3	11
234	Genetic confirmation that ependymoma can arise as part of multiple endocrine neoplasia type 1 (MEN1) syndrome. Acta Neuropathologica, 2017, 133, 661-663.	3.9	11

#	Article	IF	CITATIONS
235	Pilocytic astrocytoma demethylation and transcriptional landscapes link bZIP transcription factors to immune response. Neuro-Oncology, 2020, 22, 1327-1338.	0.6	10
236	Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) disclose similar epigenetic signatures but different transcriptional profiles. Acta Neuropathologica, 2019, 137, 1003-1015.	3.9	9
237	Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathologica, 2020, 139, 403-406.	3.9	9
238	Absence of chromosome 19q13.41 amplification in a case of atypical teratoid/rhabdoid tumor with ependymoblastic differentiation. Acta Neuropathologica, 2011, 121, 283-285.	3.9	8
239	Spinal metastasis of gliosarcoma: Array-based comparative genomic hybridization for confirmation of metastatic spread. Journal of Clinical Neuroscience, 2014, 21, 1945-1950.	0.8	8
240	Clinically Tractable Outcome Prediction of Non-WNT/Non-SHH Medulloblastoma Based on TPD52 IHC in a Multicohort Study. Clinical Cancer Research, 2022, 28, 116-128.	3.2	8
241	Integrated molecular analysis of adult sonic hedgehog (SHH)-activated medulloblastomas reveals two clinically relevant tumor subsets with VEGFA as potent prognostic indicator. Neuro-Oncology, 2021, 23, 1576-1585.	0.6	7
242	Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro-Oncology, 2021, 23, 2028-2041.	0.6	7
243	The age of adult pilocytic astrocytoma cells. Oncogene, 2021, 40, 2830-2841.	2.6	6
244	Abstract 4347: Medulloblastoma comprises four distinct diseases. , 2010, , .		6
245	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS ONE, 2019, 14, e0210665.	1.1	5
246	An optimized workflow to improve reliability of detection of KIAA1549:BRAF fusions from RNA sequencing data. Acta Neuropathologica, 2020, 140, 237-239.	3.9	5
247	Gene expression profiling of Group 3 medulloblastomas defines a clinically tractable stratification based on KIRREL2 expression. Acta Neuropathologica, 2022, 144, 339-352.	3.9	5
248	<scp>P</scp> aired box gene 8 (<scp>PAX8</scp>) expression is associated with sonic hedgehog (<scp>SHH</scp>)/wingless int (<scp>WNT</scp>) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathology and Applied Neurobiology, 2015, 41, 165-179.	1.8	4
249	Medulloepithelioma with peculiar clinical presentation, stem cell phenotype and aberrant DNA-methylation profile. CNS Oncology, 2015, 4, 203-212.	1.2	3
250	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	0.8	2
251	Molecular progression of SHH-activated medulloblastomas. Acta Neuropathologica, 2019, 138, 327-330.	3.9	2
252	Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab002.	0.4	2

#	Article	IF	CITATIONS
253	ABCB1 inhibition provides a novel therapeutic target to block TWIST1-induced migration in medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab030.	0.4	2
254	ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. BMC Proceedings, 2012, 6, .	1.8	1
255	Predictive modeling of resistance to SMO-inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. Neuro-Oncology Advances, 2022, 4, vdac026.	0.4	1
256	Ependymoma. Molecular Pathology Library, 2015, , 67-75.	0.1	0
257	GENE-13. PEDIATRIC MENINGIOMAS ARE CHARACTERIZED BY DISTINCT METHYLATION PROFILES DIFFERENT FROM ADULT MENINGIOMAS. Neuro-Oncology, 2019, 21, ii83-ii84.	0.6	0
258	Progressively Metastasizing Ependymoma: Genomic Aberrations. , 2012, , 297-306.		0
259	Co-activation of Sonic hedgehog and Wnt signaling in murine retinal precursor cells drives ocular lesions with features of intraocular medulloepithelioma. Oncogenesis, 2021, 10, 78.	2.1	0