Qipeng Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4912466/publications.pdf

Version: 2024-02-01

50276 79698 7,027 184 46 73 citations h-index g-index papers 186 186 186 9297 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing the degradation of Aflatoxin B1 by co-cultivation of two fungi strains with the improved production of detoxifying enzymes. Food Chemistry, 2022, 371, 131092.	8.2	8
2	Groundwater remediation using Magnesium–Aluminum alloys and in situ layered doubled hydroxides. Environmental Research, 2022, 204, 112241.	7.5	5
3	Enhancing stability and by-product tolerance of \hat{l}^2 -glucuronidase based on magnetic cross-linked enzyme aggregates. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112241.	5.0	11
4	Design of stable and self-regulated microbial consortia for chemical synthesis. Nature Communications, 2022, 13, 1554.	12.8	41
5	CRISPR-based metabolic engineering in non-model microorganisms. Current Opinion in Biotechnology, 2022, 75, 102698.	6.6	21
6	Redesigning regulatory components of quorum-sensing system for diverse metabolic control. Nature Communications, 2022, 13, 2182.	12.8	26
7	Biosynthesis of allantoin in <i>Escherichia coli</i> via screening a highly effective urate oxidase. Biotechnology and Bioengineering, 2022, 119, 2518-2528.	3.3	2
8	Efficient enzyme-catalyzed production of diosgenin: inspired by the biotransformation mechanisms of steroid saponins in <i>Talaromyces stollii</i> CLY-6. Green Chemistry, 2021, 23, 5896-5910.	9.0	17
9	Biophysical investigation of interactions between sorbic acid and human serum albumin through spectroscopic and computational approaches. New Journal of Chemistry, 2021, 45, 7682-7693.	2.8	11
10	Production of Highâ€Purity Hydrogen and Layered Doubled Hydroxide by Hydrolysis of Mgâ€Al Alloys. Chemical Engineering and Technology, 2021, 44, 797-803.	1.5	3
11	Extending the shikimate pathway for microbial production of maleate from glycerol in engineered Escherichia coli. Biotechnology and Bioengineering, 2021, 118, 1840-1850.	3.3	6
12	An Aldolase-Based New Pathway for Bioconversion of Formaldehyde and Ethanol into 1,3-Propanediol in <i>Escherichia coli</i> . ACS Synthetic Biology, 2021, 10, 799-809.	3.8	18
13	Zr-based acid-stable nucleotide coordination polymers: An excellent platform for acidophilic enzymes immobilization. Journal of Inorganic Biochemistry, 2021, 216, 111338.	3.5	4
14	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1328-1337.	3.8	10
15	Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnology Advances, 2021, 48, 107710.	11.7	14
16	A novel vector-based RNAi method using mouse U6 promoter-driven shRNA expression in the filamentous fungus Blakeslea trispora. Biotechnology Letters, 2021, 43, 1821-1830.	2.2	0
17	Electrospun nanofibers enhance trehalose synthesis by regulating gene expression for Micrococcus luteus fermentation. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111714.	5.0	2
18	miR-29a-3p-dependent COL3A1 and COL5A1 expression reduction assists sulforaphane to inhibit gastric cancer progression. Biochemical Pharmacology, 2021, 188, 114539.	4.4	17

#	Article	IF	CITATIONS
19	Nearâ€infrared laser 808â€nm excitable palladium nanoâ€dots loaded on graphene oxide hybrid for the antibacterial activity. Applied Organometallic Chemistry, 2021, 35, e6380.	3.5	2
20	Highly Selective Entrapment of His-Tagged Enzymes on Superparamagnetic Zirconium-Based MOFs with Robust Renewability to Enhance pH and Thermal Stability. ACS Biomaterials Science and Engineering, 2021, 7, 3727-3736.	5.2	25
21	Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	5
22	Preparation of ZIF@ADH/NAD-MSN/LDH Core Shell Nanocomposites for the Enhancement of Coenzyme Catalyzed Double Enzyme Cascade. Nanomaterials, 2021, 11, 2171.	4.1	7
23	Green synthesis of Zno@GO nanocomposite and its' efficient antibacterial activity. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102471.	2.6	22
24	Design and construction of an artificial pathway for biosynthesis of acetaminophen in Escherichia coli. Metabolic Engineering, 2021, 68, 26-33.	7.0	12
25	Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 1,3-butanediol in <i>Escherichia coli</i> Creen Chemistry, 2021, 23, 8694-8706.	9.0	17
26	Identifying the p65-Dependent Effect of Sulforaphene on Esophageal Squamous Cell Carcinoma Progression via Bioinformatics Analysis. International Journal of Molecular Sciences, 2021, 22, 60.	4.1	5
27	Selenium Nanorods Decorated Gold Nanostructures: Synthesis, Characterization and Biological Applications. Journal of Cluster Science, 2020, 31, 727-737.	3.3	11
28	Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. Journal of Environmental Sciences, 2020, 88, 103-111.	6.1	57
29	Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. Applied Nanoscience (Switzerland), 2020, 10, 1243-1255.	3.1	19
30	Synergetic utilization of glucose and glycerol for efficient ⟨i⟩myo⟨ i⟩â€inositol biosynthesis. Biotechnology and Bioengineering, 2020, 117, 1247-1252.	3.3	21
31	Degradable Carbon–Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS Nano, 2020, 14, 2847-2859.	14.6	103
32	Green synthesis of catalytic Zinc Oxide nanoâ€flowers and their bacterial infection therapy. Applied Organometallic Chemistry, 2020, 34, e5298.	3.5	24
33	Synthesis of selenium–silver nanostructures with enhanced antibacterial, photocatalytic and antioxidant activities. Applied Nanoscience (Switzerland), 2020, 10, 1191-1204.	3.1	25
34	Zinc oxideâ€'selenium heterojunction composite: Synthesis, characterization and photo-induced antibacterial activity under visible light irradiation. Journal of Photochemistry and Photobiology B: Biology, 2020, 203, 111743.	3.8	25
35	Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its' efficient biocidal and photocatalytic applications. Photodiagnosis and Photodynamic Therapy, 2020, 32, 101970.	2.6	20
36	Metabolic Engineering of Microorganisms for the Production of Flavonoids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589069.	4.1	38

#	Article	IF	CITATIONS
37	In situ fabrication of Au–CoFe2O4: an efficient catalyst for soot oxidation. Applied Nanoscience (Switzerland), 2020, 10, 3901-3910.	3.1	8
38	Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining. Applied Microbiology and Biotechnology, 2020, 104, 9991-10004.	3.6	3
39	Sulforaphene inhibits esophageal cancer progression via suppressing SCD and CDH3 expression, and activating the GADD45B-MAP2K3-p38-p53 feedback loop. Cell Death and Disease, 2020, 11, 713.	6.3	26
40	Cu/H ₃ BTC MOF as a potential antibacterial therapeutic agent against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> New Journal of Chemistry, 2020, 44, 17671-17678.	2.8	47
41	Preparation of Poly(glycidyl methacrylate) (PGMA) and Amine Modified PGMA Adsorbents for Purification of Glucosinolates from Cruciferous Plants. Molecules, 2020, 25, 3286.	3.8	6
42	Step-wise immobilization of multi-enzymes by zirconium-based coordination polymer in situ self-assembly and specific absorption. Journal of Inorganic Biochemistry, 2020, 208, 111093.	3.5	4
43	Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically <i>In Situ</i> i> Generated Graphene Interface. ACS Sensors, 2020, 5, 1795-1803.	7.8	32
44	Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microbial Cell Factories, 2020, 19, 110.	4.0	47
45	Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine, 2020, 15, 809-828.	3.3	23
46	Engineering probiotics as living diagnostics and therapeutics for improving human health. Microbial Cell Factories, 2020, 19, 56.	4.0	71
47	Quorum Sensing System Used as a Tool in Metabolic Engineering. Biotechnology Journal, 2020, 15, e1900360.	3.5	21
48	Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1750-1761.	6.0	64
49	Eco-benign approach to synthesize spherical iron oxide nanoparticles: A new insight in photocatalytic and biomedical applications. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111821.	3.8	38
50	Fast Immobilization of Human Carbonic Anhydrase II on Ni-Based Metal-Organic Framework Nanorods with High Catalytic Performance. Catalysts, 2020, 10, 401.	3.5	14
51	From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Accounts of Chemical Research, 2019, 52, 2266-2277.	15.6	137
52	Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production. Nature Communications, 2019, 10, 3337.	12.8	44
53	Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite: Efficient photocatalytic, antibacterial and antioxidant agent. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111632.	3.8	52
54	Controlled Preparation of Corncob Lignin Nanoparticles and their Size-Dependent Antioxidant Properties: Toward High Value Utilization of Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 17166-17174.	6.7	47

#	Article	IF	Citations
55	Dynamic gene expression engineering as a tool in pathway engineering. Current Opinion in Biotechnology, 2019, 59, 122-129.	6.6	63
56	Structural Insights into Catalytic Versatility of the Flavin-dependent Hydroxylase (HpaB) from Escherichia coli. Scientific Reports, 2019, 9, 7087.	3.3	17
57	Shunting Phenylacetic Acid Catabolism for Tropone Biosynthesis. ACS Synthetic Biology, 2019, 8, 876-883.	3.8	5
58	Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chemistry, 2019, 289, 568-574.	8.2	37
59	Activation of Prodrugs by NIRâ€Triggered Release of Exogenous Enzymes for Locoregional Chemoâ€photothermal Therapy. Angewandte Chemie - International Edition, 2019, 58, 7728-7732.	13.8	65
60	Activation of Prodrugs by NIRâ€Triggered Release of Exogenous Enzymes for Locoregional Chemoâ€photothermal Therapy. Angewandte Chemie, 2019, 131, 7810-7814.	2.0	1
61	Constructing an efficient salicylate biosynthesis platform by Escherichia coli chromosome integration. Journal of Biotechnology, 2019, 298, 5-10.	3.8	5
62	Catalytic Activity and Application of Immobilized Chloroperoxidase by Biometric Magnetic Nanoparticles. Industrial & Engineering Chemistry Research, 2019, 58, 3555-3560.	3.7	17
63	Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. Journal of Photochemistry and Photobiology B: Biology, 2019, 193, 31-38.	3.8	55
64	Efficient biosynthesis of 3, 4-dihydroxyphenylacetic acid in Escherichia coli. Journal of Biotechnology, 2019, 294, 14-18.	3.8	14
65	A rapid microwave-assisted phosphoric-acid treatment on carbon fiber surface for enhanced cell immobilization in xylitol fermentation. Colloids and Surfaces B: Biointerfaces, 2019, 175, 697-702.	5.0	15
66	Intensifying sulforaphane formation in broccoli sprouts by using other cruciferous sprouts additions. Food Science and Biotechnology, 2018, 27, 957-962.	2.6	8
67	Exploring the Promiscuity of Phenol Hydroxylase from <i>Pseudomonas stutzeri</i> OX1 for the Biosynthesis of Phenolic Compounds. ACS Synthetic Biology, 2018, 7, 1238-1243.	3.8	13
68	Microbial production of glutaconic acid via extradiol ring cleavage of catechol. Journal of Chemical Technology and Biotechnology, 2018, 93, 1677-1683.	3.2	8
69	Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synthetic Biology, 2018, 7, 647-654.	3.8	67
70	Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metabolic Engineering, 2018, 45, 1-10.	7.0	18
71	Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. International Journal of Biological Macromolecules, 2018, 112, 7-13.	7.5	133
72	Establishment of Novel Biosynthetic Pathways for the Production of Salicyl Alcohol and Gentisyl Alcohol in Engineered <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 1012-1017.	3.8	11

#	Article	IF	CITATIONS
73	Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresource Technology, 2018, 258, 302-309.	9.6	114
74	Design, synthesis and biological evaluation of novel 2-aminobenzamides containing dithiocarbamate moiety as histone deacetylase inhibitors and potent antitumor agents. European Journal of Medicinal Chemistry, 2018, 143, 320-333.	5 . 5	36
75	Microbial synthesis of pyrogallol using genetically engineered Escherichia coli. Metabolic Engineering, 2018, 45, 134-141.	7.0	35
76	Investigating the strategies for microbial production of trehalose from lignocellulosic sugars. Biotechnology and Bioengineering, 2018, 115, 785-790.	3.3	11
77	Recent advances in microbial production of aromatic natural products and their derivatives. Applied Microbiology and Biotechnology, 2018, 102, 47-61.	3.6	62
78	\hat{l}^2 -Lactoglobulin as a Nanotransporter for Glabridin: Exploring the Binding Properties and Bioactivity Influences. ACS Omega, 2018, 3, 12246-12252.	3.5	9
79	Biodegradable Poly(amino acid)–Gold–Magnetic Complex with Efficient Endocytosis for Multimodal Imaging-Guided Chemo-photothermal Therapy. ACS Nano, 2018, 12, 9022-9032.	14.6	57
80	Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nature Communications, 2018, 9, 3043.	12.8	73
81	Improvement of Trehalose Production by Immobilized Trehalose Synthase from Thermus thermophilus HB27. Molecules, 2018, 23, 1087.	3.8	9
82	Design, synthesis and biological evaluation of novel carbamodithioates as anti-proliferative agents against human cancer cells. European Journal of Medicinal Chemistry, 2018, 157, 1526-1540.	5.5	2
83	An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 367-373.	3.8	73
84	Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase. Journal of Biotechnology, 2018, 280, 49-54.	3.8	23
85	Self-repairing metal–organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability. Chemical Communications, 2017, 53, 3216-3219.	4.1	38
86	Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metabolic Engineering, 2017, 40, 148-156.	7.0	73
87	The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 2017, 102, 133-142.	2.9	149
88	<i>De Novo</i> Biosynthesis of Glutarate <i>via</i> α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in <i>Escherichia coli</i> ACS Synthetic Biology, 2017, 6, 1922-1930.	3.8	57
89	Improving trehalose synthase activity by adding the C-terminal domain of trehalose synthase from Thermus thermophilus. Bioresource Technology, 2017, 245, 1749-1756.	9.6	9
90	Elevating 4-hydroxycoumarin production through alleviating thioesterase-mediated salicoyl-CoA degradation. Metabolic Engineering, 2017, 42, 59-65.	7.0	24

#	Article	IF	Citations
91	Establishing an Artificial Pathway for <i>De Novo</i> Biosynthesis of Vanillyl Alcohol in <i>Escherichia coli</i> ACS Synthetic Biology, 2017, 6, 1784-1792.	3.8	27
92	Naringeninâ€responsive riboswitchâ€based fluorescent biosensor module for <i>Escherichia coli</i> coâ€cultures. Biotechnology and Bioengineering, 2017, 114, 2235-2244.	3.3	83
93	High-level De novo biosynthesis of arbutin in engineered Escherichia coli. Metabolic Engineering, 2017, 42, 52-58.	7.0	52
94	A Cheap and Convenient Method of Liposome Preparation Using Glass Beads as a Source of Shear Force. AAPS PharmSciTech, 2017, 18, 3227-3235.	3.3	8
95	Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metabolic Engineering, 2017, 41, 39-45.	7.0	48
96	Design, synthesis and biological evaluation of novel hydroxamates and 2-aminobenzamides as potent histone deacetylase inhibitors and antitumor agents. European Journal of Medicinal Chemistry, 2017, 134, 1-12.	5.5	22
97	Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1352-1360.	8.0	319
98	Characterization of glabridin/hydroxypropyl- \hat{l}^2 -cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydrate Polymers, 2017, 159, 152-160.	10.2	93
99	Boric Acid Catalyzed Direct Amidation between Amino-Azaarenes and Carboxylic Acids. Synthesis, 2017, 49, 1583-1596.	2.3	8
100	Antifungal graphene oxide-borneol composite. Colloids and Surfaces B: Biointerfaces, 2017, 160, 220-227.	5.0	45
101	Rational engineering of <i>p</i>)â€hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnology and Bioengineering, 2017, 114, 2571-2580.	3.3	67
102	Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microbial Pathogenesis, 2017, 110, 304-312.	2.9	37
103	Molecular mechanism of tobramycin with human serum albumin for probing binding interactions: multi-spectroscopic and computational approaches. New Journal of Chemistry, 2017, 41, 8203-8213.	2.8	24
104	Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metabolic Engineering, 2017, 39, 102-109.	7.0	97
105	Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose. Metabolic Engineering, 2017, 39, 1-8.	7.0	25
106	Glucoraphenin, sulforaphene, and antiproliferative capacity of radish sprouts in germinating and thermal processes. European Food Research and Technology, 2017, 243, 547-554.	3.3	20
107	Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of $\hat{l}\mu$ -polylysine. Food Chemistry, 2017, 221, 18-23.	8.2	82
108	The natural compound sulforaphene, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. Oncotarget, 2016, 7, 76656-76666.	1.8	34

#	Article	IF	Citations
109	Metabolic Engineering Strategies for Co-Utilization of Carbon Sources in Microbes. Bioengineering, 2016, 3, 10.	3.5	35
110	Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation. Materials, 2016, 9, 206.	2.9	34
111	Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1. Breast Cancer Research and Treatment, 2016, 158, 277-286.	2.5	33
112	Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. European Journal of Lipid Science and Technology, 2016, 118, 592-602.	1.5	60
113	Highly Hybridizable Spherical Nucleic Acids by Tandem Glutathione Treatment and Polythymine Spacing. ACS Applied Materials & Spacing. ACS ACS Applied Materials & Spacing. ACS	8.0	9
114	Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microbial Pathogenesis, 2016, 99, 271-281.	2.9	58
115	Expression, purification and characterization of GAPDH-ChSase ABC I from Proteus vulgaris in Escherichia coli. Protein Expression and Purification, 2016, 128, 36-41.	1.3	9
116	Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli. Journal of Biotechnology, 2016, 236, 159-165.	3.8	8
117	Sulforaphene inhibits hepatocellular carcinoma through repressing keratin 8 and activating anoikis. RSC Advances, 2016, 6, 70326-70334.	3.6	9
118	Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 273-277.	3.8	87
119	High adsorption capacity by creating a hydrophobic/hydrophilic layer on the surface of silicalite-1. RSC Advances, 2016, 6, 99509-99513.	3.6	3
120	Furfural tolerance and detoxification mechanism in Candida tropicalis. Biotechnology for Biofuels, 2016, 9, 250.	6.2	38
121	Phytosynthesis and Antileishmanial Activity of Gold Nanoparticles by <i>M aytenus Royleanus</i> . Journal of Food Biochemistry, 2016, 40, 420-427.	2.9	51
122	Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15615-15622.	8.0	57
123	Preparation of multiâ€enzyme coâ€immobilized nanoparticles by bisâ€aryl hydrazone bond conjugation. Biotechnology and Applied Biochemistry, 2016, 63, 214-219.	3.1	9
124	A functional lncRNA <i>HOTAIR</i> genetic variant contributes to gastric cancer susceptibility. Molecular Carcinogenesis, 2016, 55, 90-96.	2.7	135
125	The stability and degradation mechanism of sulforaphene in solvents. Food Chemistry, 2016, 199, 301-306.	8.2	13
126	Diaminopropionic Acid Reinforced Graphene Sponge and Its Use for Hemostasis. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 7666-7673.	8.0	121

#	Article	IF	Citations
127	Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 49-58.	3.8	67
128	Rational surface silane modification for immobilizing glucose oxidase. International Journal of Biological Macromolecules, 2016, 87, 191-194.	7.5	9
129	Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase. Metabolic Engineering, 2016, 35, 75-82.	7. 0	42
130	Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Advances, 2016, 6, 23775-23782.	3.6	40
131	Visible light-induced photodegradation of methylene blue and reduction of 4-nitrophenol to 4-aminophenol over bio-synthesized silver nanoparticles. Separation Science and Technology, 2016, 51, 1070-1078.	2.5	40
132	The mechanism of sulforaphene degradation to different water contents. Food Chemistry, 2016, 194, 1022-1027.	8.2	25
133	Structural Insights into Substrate Specificity of Feruloyl-CoA 6'-Hydroxylase from Arabidopsis thaliana. Scientific Reports, 2015, 5, 10355.	3.3	21
134	Functional BCL-2 regulatory genetic variants contribute to susceptibility of esophageal squamous cell carcinoma. Scientific Reports, 2015, 5, 11833.	3.3	16
135	Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity. Frontiers in Microbiology, 2015, 6, 1010.	3. 5	18
136	fMiRNA-192 and miRNA-204 Directly Suppress IncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma. PLoS Genetics, 2015, 11, e1005726.	3. 5	151
137	Black hemostatic sponge based on facile prepared cross-linked graphene. Colloids and Surfaces B: Biointerfaces, 2015, 132, 27-33.	5.0	76
138	Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. RSC Advances, 2015, 5, 51947-51952.	3.6	32
139	Downâ€regulation of 5S rRNA by miRâ€150 and miRâ€383 enhances câ€Myc–rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Letters, 2015, 589, 3989-3997.	2.8	28
140	miRâ€190a inhibits epithelial–mesenchymal transition of hepatoma cells via targeting the long nonâ€coding RNA treRNA. FEBS Letters, 2015, 589, 4079-4087.	2.8	23
141	The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydrate Polymers, 2015, 122, 5-10.	10.2	24
142	Systematically Engineering <i>Escherichia coli</i> for Enhanced Production of 1,2-Propanediol and 1-Propanol. ACS Synthetic Biology, 2015, 4, 746-756.	3.8	52
143	Silencing of Long Noncoding RNA MALAT1 by miR-101 and miR-217 Inhibits Proliferation, Migration, and Invasion of Esophageal Squamous Cell Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 3925-3935.	3.4	268
144	Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel. Carbohydrate Polymers, 2015, 121, 276-283.	10.2	25

#	Article	IF	CITATIONS
145	Improving oxidative stability of peanut oil under microwave treatment and deep fat frying by stearic acid–surfacant–tea polyphenols complex. European Journal of Lipid Science and Technology, 2015, 117, 1008-1015.	1.5	11
146	Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme. International Journal of Biological Macromolecules, 2015, 78, 96-101.	7.5	25
147	Metabolic regulation of \hat{l} ±-linolenic acid on \hat{l} ²-carotene synthesis in Blakeslea trispora revealed by a GC-MS-based metabolomic approach. RSC Advances, 2015, 5, 63193-63201.	3.6	3
148	Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 2015, 82, 1-8.	2.1	24
149	Microbial production of phenol via salicylate decarboxylation. RSC Advances, 2015, 5, 92685-92689.	3.6	12
150	Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode. RSC Advances, 2015, 5, 99364-99377.	3.6	108
151	Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances, 2015, 5, 73793-73806.	3.6	167
152	Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Advances, 2015, 5, 76040-76047.	3.6	19
153	Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability. Journal of Agricultural and Food Chemistry, 2015, 63, 8669-8675.	5.2	57
154	Precursor-Directed Biosynthesis of 5-Hydroxytryptophan Using Metabolically Engineered <i>E. coli</i> . ACS Synthetic Biology, 2015, 4, 554-558.	3.8	20
155	Expression, purification and thermostability of MBP-chondroitinase ABC I from Proteus vulgaris. International Journal of Biological Macromolecules, 2015, 72, 6-10.	7.5	20
156	Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metabolic Engineering, 2014, 23, 62-69.	7.0	150
157	Isolation of cyanidin 3-glucoside from blue honeysuckle fruits by high-speed counter-current chromatography. Food Chemistry, 2014, 152, 386-390.	8.2	42
158	Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chemistry, 2014, 150, 307-312.	8.2	137
159	Optimization of <scp>SO₂</scp> atalyzed hydrolysis of corncob for xylose and xylitol production. Journal of Chemical Technology and Biotechnology, 2014, 89, 1720-1726.	3.2	8
160	Separation and Purification of Sinigrin and Gluconapin from Defatted Indian Mustard Seed Meals by Macroporous Anion Exchange Resin and Medium Pressure Liquid Chromatography. Separation Science and Technology, 2014, 49, 1838-1847.	2.5	5
161	Separation of binary solvent mixtures with solvent resistant nanofiltration membranes Part A: investigation of separation performance. RSC Advances, 2014, 4, 40740-40747.	3.6	14
162	Separation of binary solvent mixtures with solvent resistant nanofiltration membranes part B: process modeling. RSC Advances, 2014, 4, 37375-37380.	3.6	2

#	Article	IF	Citations
163	Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohydrate Polymers, 2014, 114, 21-26.	10.2	36
164	The identification of an ESCC susceptibility SNP rs920778 that regulates the expression of lncRNA <i>HOTAIR</i> via a novel intronic enhancer. Carcinogenesis, 2014, 35, 2062-2067.	2.8	146
165	Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers, 2014, 112, 695-700.	10.2	136
166	Leukocyte Telomere Length-Related rs621559 and rs398652 Genetic Variants Influence Risk of HBV-Related Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e110863.	2.5	7
167	Functional CYP1A1 genetic variants, alone and in combination with smoking, contribute to development of head and neck cancers. European Journal of Cancer, 2013, 49, 2143-2151.	2.8	27
168	Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography. Food Chemistry, 2013, 136, 309-315.	8.2	34
169	Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chemistry, 2013, 136, 342-347.	8.2	49
170	Xylitol fermentation using hemicellulose hydrolysate prepared by acid preâ€impregnated steam explosion of corncob. Journal of Chemical Technology and Biotechnology, 2013, 88, 2067-2074.	3.2	15
171	Prediction Strategy of Adsorption Equilibrium Time Based on Equilibrium and Kinetic Results To Isolate Taxifolin. Industrial & Engineering Chemistry Research, 2012, 51, 454-463.	3.7	40
172	Separation of sinigrin from Indian mustard (Brassica juncea L.) seed using macroporous ion-exchange resin. Korean Journal of Chemical Engineering, 2012, 29, 396-403.	2.7	17
173	RAPID LARGEâ€6CALE PURIFICATION OF BETULINIC ACID. Journal of Food Process Engineering, 2012, 35, 881-886.	2.9	1
174	Study on a carboxylâ€activated carrier and its properties for papain immobilization. Journal of Chemical Technology and Biotechnology, 2012, 87, 1083-1088.	3.2	21
175	Classification of Auroraâ€A Kinase Inhibitors Using Selfâ€Organizing Map (SOM) and Support Vector Machine (SVM). Molecular Informatics, 2011, 30, 35-44.	2.5	6
176	A sequence optimization strategy for chromatographic separation in reversedâ€phase highâ€performance liquid chromatography. AICHE Journal, 2010, 56, 371-380.	3.6	0
177	Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Engineering in China, 2010, 4, 57-64.	0.6	47
178	Preparative Purification of the Major Flavonoid Glabridin from Licorice Roots by Solid Phase Extraction and Preparative High Performance Liquid Chromatography. Separation Science and Technology, 2010, 45, 1104-1111.	2.5	14
179	Isolation and Purification of Glucoraphenin from Radish Seeds by Low-Pressure Column Chromatography and Nanofiltration. Separation Science and Technology, 2010, 46, 179-184.	2.5	8
180	Preparative Separation of Glabridin fromGlycyrrhiza glabral. Extracts with Macroporous Resins. Separation Science and Technology, 2009, 44, 3717-3734.	2.5	11

#	Article	IF	CITATIONS
181	Classification of Bloodâ€Brain Barrier Permeation by Kohonen's Selfâ€Organizing Neural Network (KohNN) and Support Vector Machine (SVM). QSAR and Combinatorial Science, 2009, 28, 989-994.	1.4	19
182	Chemometric Approach for Simultaneous Optimization of Resolution and Analysis Time in CCC. Chromatographia, 2009, 70, 1547-1552.	1.3	2
183	Modeling of Nanofiltration Process for Solvent Recovery from Aqueous Ethanol Solution of Soybean Isoflavones. Separation Science and Technology, 2009, 44, 3239-3257.	2.5	5
184	Biopolymer production in microbiology by application of metabolic engineering. Polymer Bulletin, 0, , 1.	3.3	1