
Isidro Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4912123/publications.pdf Version: 2024-02-01

ISIDDO CALVO

#	Article	IF	CITATIONS
1	A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering. IEEE Transactions on Education, 2018, 61, 21-28.	2.0	42
2	A modular CPS architecture design based on ROS and Docker. International Journal on Interactive Design and Manufacturing, 2017, 11, 949-955.	1.3	29
3	Variable speed wind turbine control scheme using a robust wind torque estimation. Renewable Energy, 2019, 133, 354-366.	4.3	28
4	Experimental Validation of a Sliding Mode Control for a Stewart Platform Used in Aerospace Inspection Applications. Mathematics, 2020, 8, 2051.	1.1	25
5	Provision of Frequency Response from Wind Farms: A Review. Energies, 2021, 14, 6689.	1.6	24
6	Developing CPPS within IEC-61499 based on low cost devices. , 2015, , .		21
7	Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications. Energies, 2021, 14, 7806.	1.6	21
8	A methodology based on distributed object-oriented technologies for providing remote access to industrial plants. Control Engineering Practice, 2006, 14, 975-990.	3.2	20
9	Building industrial CPS with the IEC 61499 standard on low-cost hardware platforms. , 2014, , .		20
10	Building IoT Applications with Raspberry Pi and Low Power IQRF Communication Modules. Electronics (Switzerland), 2016, 5, 54.	1.8	19
11	Towards a methodology to build virtual reality manufacturing systems based on free open software technologies. International Journal on Interactive Design and Manufacturing, 2017, 11, 569-580.	1.3	18
12	Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation. Energies, 2019, 12, 943.	1.6	18
13	Feedforward Compensation Analysis of Piezoelectric Actuators Using Artificial Neural Networks with Conventional PID Controller and Single-Neuron PID Based on Hebb Learning Rules. Energies, 2020, 13, 3929.	1.6	16
14	Control communications with DDS using IEC61499 Service Interface Function Blocks. , 2010, , .		15
15	Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System. Energies, 2018, 11, 2939.	1.6	13
16	Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation. Mathematics, 2020, 8, 2071.	1.1	13
17	Real time observer and control scheme for a wind turbine system based on a high order sliding modes. Journal of the Franklin Institute, 2021, 358, 5795-5819.	1.9	12
18	Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings. Energies, 2022, 15, 2270.	1.6	12

ISIDRO CALVO

#	Article	IF	CITATIONS
19	High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks. Mathematics, 2021, 9, 244.	1.1	11
20	Combining moodle and redmine as e-learning tools in Project Based Learning of Industrial Electronics. , 2013, , .		10
21	Inverse design and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits. Applied Physics A: Materials Science and Processing, 2014, 115, 433-438.	1.1	10
22	A Novel Synchronous Scheduling Service for CORBA-RT Applications. , 2007, , .		9
23	Building complex remote learning laboratories. Computer Applications in Engineering Education, 2010, 18, 53-66.	2.2	9
24	Sliding Mode Control with Dynamical Correction for Time-Delay Piezoelectric Actuator Systems. Materials, 2020, 13, 132.	1.3	9
25	Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System. Energies, 2021, 14, 3499.	1.6	9
26	Towards a modular and scalable design for the communications of electrical protection relays. , 2009, , .		8
27	A Remote Laboratory for a Basic Course on Control Engineering. International Journal of Online and Biomedical Engineering, 2009, 5, 8.	0.9	8
28	Using object oriented technologies in factory automation. , 0, , .		7
29	Access to process data with OPC-DA using IEC61499 Service Interface Function Blocks. , 2009, , .		7
30	Supporting a reconfigurable real-time service-oriented middleware with FTT-CORBA. , 2010, , .		7
31	FTT-MA: A Flexible Time-Triggered Middleware Architecture for Time Sensitive, Resource-Aware Aml Systems. Sensors, 2013, 13, 6229-6253.	2.1	7
32	Building Wireless Control Applications with XBee and LabVIEW. Applied Sciences (Switzerland), 2019, 9, 2379.	1.3	7
33	Advanced Trajectory Control for Piezoelectric Actuators Based on Robust Control Combined with Artificial Neural Networks. Applied Sciences (Switzerland), 2021, 11, 7390.	1.3	7
34	A Time-Triggered Middleware Architecture for Ubiquitous Cyber Physical System Applications. Lecture Notes in Computer Science, 2012, , 73-80.	1.0	7
35	Reliable Control Applications with Wireless Communication Technologies: Application to Robotic Systems. Sensors, 2021, 21, 7107.	2.1	6
36	Towards a OMG DDS communication backbone for factory automation applications. , 2011, , .		5

36 Towards a OMG DDS communication backbone for factory automation applications. , 2011, , .

ISIDRO CALVO

#	Article	IF	CITATIONS
37	A time-triggered data distribution service for FTT-CORBA. , 2012, , .		5
38	Distribution middleware technologies for Cyber Physical Systems. , 2012, , .		5
39	Configurable cooperative middleware for the next generation of CPS. , 2012, , .		5
40	Designing High Performance Factory Automation Applications on Top of DDS. International Journal of Advanced Robotic Systems, 2013, 10, 205.	1.3	5
41	A Design-Oriented Engineering Course Involving Interactions With Stakeholders. IEEE Transactions on Education, 2020, 63, 283-290.	2.0	5
42	Towards an Infrastructure Model for Composing and Reconfiguring Cyber-Physical Systems. Lecture Notes in Computer Science, 2012, , 282-289.	1.0	5
43	Tracking Control for Piezoelectric Actuators with Advanced Feed-forward Compensation Combined with PI Control , 0, , .		5
44	Adding Synchronous Scheduling to CORBA-RT. , 2006, , .		4
45	Towards Middleware-Based Cooperation Topologies for the Next Generation of CPS. International Journal of Online and Biomedical Engineering, 2012, 8, 20.	0.9	4
46	Towards a Generic Architecture for Building Modular CPS as Applied to Mobile Robotics. International Journal of Online Engineering, 2016, 12, 4.	0.5	4
47	Key Vulnerabilities of Industrial Automation and Control Systems and Actions to Prevent Cyber-Attacks. International Journal of Online Engineering, 2016, 12, 9.	0.5	4
48	USING UML FOR MODELLING REMOTE ACCESS TO MANUFACTURING SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 213-218.	0.4	3
49	Building a CPS as an Educational Challenge. International Journal of Online and Biomedical Engineering, 2014, 10, 52.	0.9	3
50	A flexible time-triggered service for real-time CORBA. Computer Standards and Interfaces, 2014, 36, 531-544.	3.8	3
51	The challenge of building a cyber physical system as an educational experience. , 2014, , .		3
52	Object-oriented based architecture for accessing remotely electrical protection relays. , 0, , .		2
53	A CORBA Wrapper for Applications with Multiple Robots. International Journal of Online and Biomedical Engineering, 2011, 7, 4.	0.9	2
54	Flexible, modular, standard, free and affordable model for CPS control applied to mobile robotics. , 2015, , .		2

ISIDRO CALVO

#	Article	IF	CITATIONS
55	A framework based on CORBA and OO technologies for remote access to industrial plants. , 2003, , .		2
56	A Framework with Proactive Nodes for Scheduling and Optimizing Distributed Embedded Systems. Lecture Notes in Computer Science, 2010, , 236-245.	1.0	2
57	A Model for System Resources in Flexible Time-Triggered Middleware Architectures. Lecture Notes in Computer Science, 2012, , 215-226.	1.0	2
58	Longitudinal Collision Avoidance Based on Model Predictive Controllers and Fuzzy Inference Systems. , 2020, , .		2
59	Using a CORBA synchronous scheduling service in Pick&Place operations. , 2008, , .		1
60	Design and Performance of a XBee 900 MHz Acquisition System Aimed at Industrial Applications. Applied Sciences (Switzerland), 2021, 11, 8174.	1.3	1
61	Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings. Communications in Computer and Information Science, 2018, , 167-180.	0.4	1
62	Application of Differential Evolution as method of pitch control setting in a wind turbine. Renewable Energy and Power Quality Journal, 0, , 660-666.	0.2	1
63	Design of a PBL Experience in the Field of Sustainability for Industrial Informatics. Advances in Intelligent Systems and Computing, 2021, , 338-347.	0.5	1
64	A novel framework for scheduling distributed tasks. , 2009, , .		0
65	Reconfiguring factory automation applications with FTT-MA. , 2013, , .		0
66	Inverse design of novel nanophotonic structures. , 2013, , .		0
67	Dealing with intensive distributed video-traffic in reconfigurable automation applications. , 2014, , .		0
68	Towards silicon all-optical nanophotonic circuitry. , 2014, , .		0
69	Coupling light into photonic integrated circuits using non-periodic surfaces. , 2015, , .		0
70	Adaptive sliding mode control scheme for a wave power generation plant. , 2017, , .		0
71	Learning basic robotics and VAL II programming with LEGO Mindstorms robots. , 2018, , .		0
72	A Framework to Simplify the Creation of Remote Laboratories. International Journal of Online and Biomedical Engineering, 2010, 6, 25.	0.9	0