Yang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/491211/publications.pdf

Version: 2024-02-01

304743 276875 1,779 42 22 41 citations h-index g-index papers 42 42 42 1235 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Copper-catalyzed oxidative phosphonoheteroarylation of alkenes with phosphonates and N-heteroarenes <i>via </i> P–H/C–H functionalization. Organic Chemistry Frontiers, 2022, 9, 476-480.	4.5	7
2	Visible-light-driven photoredox-catalyzed C(sp ³)–C(sp ³) cross-coupling of <i>N</i> arylamines with cycloketone oxime esters. Organic Chemistry Frontiers, 2022, 9, 2534-2540.	4.5	10
3	Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp ³)–H Functionalization. Journal of the American Chemical Society, 2022, 144, 339-348.	13.7	51
4	Copper-catalyzed fluoroamide-directed remote benzylic C–H olefination: facile access to internal alkenes. Organic Chemistry Frontiers, 2022, 9, 4309-4315.	4.5	3
5	Nickel-Catalyzed C–S Reductive Cross-Coupling of Alkyl Halides with Arylthiosilanes toward Alkyl Aryl Thioethers. Organic Letters, 2022, 24, 5115-5119.	4.6	8
6	Heteroannulation of $\langle i \rangle N \langle i \rangle$ -Fluoro- $\langle i \rangle N \langle i \rangle$ -alkylsulfonamides with Terminal Alkynes via Remote $C(sp \langle sup \rangle 3 \langle sup \rangle)$ and $E(sp \langle sup \rangle 3 \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ and $E(sp \langle sup \rangle)$ are all $E(sp \langle sup \rangle)$ an	11.2	27
7	Rh(<scp>iii</scp>)-Catalyzed [3 + 2]/[4 + 2] annulation of acetophenone oxime ethers with 3-acetoxy-1,4-enynes involving C–H activation. Organic Chemistry Frontiers, 2021, 8, 2955-2962.	4.5	7
8	Metal-free amino-controlled electrochemical intramolecular C–O and C–N couplings by site-selective activation of aryl C–N and C–O bonds. Green Chemistry, 2021, 23, 2044-2048.	9.0	18
9	Photocatalytic Decarboxylative [3 + 2] and [4 + 2] Annulation of Enynals and \hat{i}^3 , if-Unsaturated <i>N</i> -(Acyloxy)phthalimides by Nal/PPh ₃ Catalysis. Organic Letters, 2021, 23, 7839-7844.	4.6	24
10	Metal-free electrochemical [3 + 2] heteroannulation of anilines with pyridines enabled by dual C–H radical aminations. Green Chemistry, 2021, 23, 9024-9029.	9.0	10
11	Electrochemical Oxygenation of Sulfides with Molecular Oxygen or Water: Switchable Preparation of Sulfoxides and Sulfones. Organic and Biomolecular Chemistry, 2021, 19, 10314-10318.	2.8	8
12	Transformations of N-arylpropiolamides to indoline-2,3-diones and acids via C≡C triple bond oxidative cleavage and C(sp2)–H functionalization. Science China Chemistry, 2020, 63, 222-227.	8.2	13
13	Metal-free decarboxylative annulation of N-arylacrylamides with vinyl acids to synthesize benzo[b]azepin-2-ones. Organic Chemistry Frontiers, 2020, 7, 2486-2491.	4.5	18
14	Photocatalytic Decarboxylative $[2 + 2 + \langle i \rangle m \langle i \rangle]$ Cyclization of 1,7-Enynes Mediated by Tricyclohexylphosphine and Potassium Iodide. Organic Letters, 2020, 22, 8819-8823.	4.6	48
15	Electrochemical Alkoxyhalogenation of Alkenes with Organohalides as the Halide Sources via Dehalogenation. Organic Letters, 2020, 22, 7250-7254.	4.6	36
16	[2 + 2 + 1] Heteroannulation of Alkenes with Enynyl Benziodoxolones and Silver Nitrite Involving C≡C bond Oxidative Cleavage: Entry to 3-Aryl-Δ2-isoxazolines. Organic Letters, 2020, 22, 4250-4254.	4.6	10
17	Dimethyl Sulfoxide as an Oxygen Atom Source Enabled Tandem Conversion of 2â€Alkynyl Carbonyls to 1,2â€Dicarbonyls. Advanced Synthesis and Catalysis, 2020, 362, 1846-1850.	4.3	18
18	Photocatalytic dual decarboxylative alkenylation mediated by triphenylphosphine and sodium iodide. Organic and Biomolecular Chemistry, 2020, 18, 5589-5593.	2.8	30

#	Article	IF	CITATIONS
19	Radical-mediated oxidative annulations of 1, <i>n</i> -enynes involving Câ€"H functionalization. Chemical Communications, 2020, 56, 6907-6924.	4.1	57
20	Oxidative [4+2] Cycloaddition of α-(N-Arylamino) Carbonyls with Aryl Alkenes by Multiple C–H Functionalizations and [1,2]-Aryl Shifts. Organic Letters, 2019, 21, 6285-6288.	4.6	20
21	Photoredox Alkylarylation of N â∈Benzylâ∈•N â∈(2â∈ethynylaryl)â∈Amides with αâ∈Bromoalkyl Esters: Access to Dibenzazepines. Advanced Synthesis and Catalysis, 2019, 361, 4645-4650.	4.3	20
22	Rhodiumâ€Catalysed [4+2] Annulation of Aromatic Oximes with Terminal Alkenes by Câ^'H/Nâ^'O Functionalization towards 3,4â€Dihydroisoquinolines. Advanced Synthesis and Catalysis, 2019, 361, 4955-4960.	4.3	10
23	Recent advances in radical-mediated [2+2+m] annulation of 1,n-enynes. Science China Chemistry, 2019, 62, 1463-1475.	8.2	52
24	Oxidative tandem annulation of 1-(2-ethynylaryl) prop-2-en-1-ones catalyzed by cooperative iodine and TBHP. Chemical Communications, 2019, 55, 667-670.	4.1	23
25	Intermolecular dialkylation of alkenes with two distinct C(sp ³)â"€H bonds enabled by synergistic photoredox catalysis and iron catalysis. Science Advances, 2019, 5, eaav9839.	10.3	84
26	Electrochemical Threeâ€Component 1,2â€Aminosulfonylation of Alkenes: Entry to 2â€sulfonylethanâ€1â€amines Advanced Synthesis and Catalysis, 2019, 361, 1538-1542.	·4.3	47
27	Silverâ€Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2â€Diketones and Arylâ€Substituted Ethanes. Advanced Synthesis and Catalysis, 2018, 360, 1439-1443.	4.3	23
28	Oxidative radical divergent Si-incorporation: facile access to Si-containing heterocycles. Chemical Communications, 2018, 54, 1441-1444.	4.1	40
29	Alkylarylation of styrenes <i>via</i> direct C(sp ³)â€"Br/C(sp ²)â€"H functionalization mediated by photoredox and copper cooperative catalysis. Chemical Communications, 2018, 54, 12816-12819.	4.1	65
30	Copper-Catalyzed Three-Components Intermolecular Alkylesterification of Styrenes with Toluenes and Peroxyesters or Acids. Organic Letters, 2018, 20, 7594-7597.	4.6	23
31	Alkylamination of Styrenes with Alkyl <i>N</i> -Hydroxyphthalimide Esters and Amines by B(C ₆ H ₅) ₃ -Facilitated Photoredox Catalysis. Organic Letters, 2018, 20, 6659-6662.	4.6	60
32	Metal-Free C(sp ³)–H Allylation via Aryl Carboxyl Radicals Enabled by Donor–Acceptor Complex. Organic Letters, 2018, 20, 3296-3299.	4.6	67
33	Decarbonylative Formation of Homoallyl Radical Capable of Annulation with <i>N</i> -Arylpropiolamides via Aldehyde Auto-oxidation. Organic Letters, 2018, 20, 5323-5326.	4.6	34
34	Metal-Free Oxidative Decarbonylative [3+2] Annulation of Terminal Alkynes with Tertiary Alkyl Aldehydes toward Cyclopentenes. Journal of Organic Chemistry, 2018, 83, 8581-8588.	3.2	14
35	Manganese-Catalyzed Intermolecular Oxidative Annulation of Alkynes with \hat{I}^3 -Vinyl Aldehydes: An Entry to Bridged Carbocyclic Systems. Organic Letters, 2017, 19, 6172-6175.	4.6	14
36	Silver-Catalyzed Intermolecular $[3 + 2]/[5 + 2]$ Annulation of $\langle i \rangle N \langle i \rangle$ -Arylpropiolamides with Vinyl Acids: Facile Synthesis of Fused $2 \langle i \rangle H \langle i \rangle$ -Benzo $[\langle i \rangle b \langle i \rangle]$ azepin-2-ones. ACS Catalysis, 2017, 7, 6757-6761.	11.2	56

YANG LI

#	Article	IF	CITATION
37	Donor–Acceptor Complex Enables Alkoxyl Radical Generation for Metalâ€Free C(sp ³)–C(sp ³) Cleavage and Allylation/Alkenylation. Angewandte Chemie - International Edition, 2017, 56, 12619-12623.	13.8	196
38	Visible Lightâ€Initiated C(<i>sp</i> ³)Br/C(<i>sp</i> ³)H Functionalization of αâ€Carbonyl Alkyl Bromides through Hydride Radical Shift. Advanced Synthesis and Catalysis, 2016, 358, 1219-1228.	4.3	60
39	Intermolecular oxidative decarbonylative $[2+2+2]$ carbocyclization of N-(2-ethynylaryl)acrylamides with tertiary and secondary alkyl aldehydes involving C(sp ³)â \in "H functionalization. Chemical Science, 2016, 7, 7050-7054.	7.4	70
40	Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp ³)â^'H Functionalization under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2016, 55, 1872-1875.	13.8	248
41	Alkylation/1,2-aryl migration of \hat{l}_{\pm} -aryl allylic alcohols with \hat{l}_{\pm} -carbonyl alkyl bromides using visible-light photoredox catalysis. Organic Chemistry Frontiers, 2015, 2, 1457-1467.	4.5	56
42	Oxidative radical 1,2-alkylarylation of alkenes with α-C(sp ^{3< sup>)–H bonds of acetonitriles involving 1,2-aryl migration. Chemical Communications, 2015, 51, 1024-1026.}	4.1	94