
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910896/publications.pdf Version: 2024-02-01

CHANC-SHULYL

#	Article	IF	CITATIONS
1	Common Environmental Effects on Quantum Thermal Transistor. Entropy, 2022, 24, 32.	2.2	12
2	The Best Approximation of an Objective State With a Given Set of Quantum States. Annalen Der Physik, 2022, 534, 2100407.	2.4	0
3	Enhanced entanglement and quantum steering of directly and indirectly coupled modes in a magnomechanical system. Physica Scripta, 2022, 97, 075102.	2.5	16
4	Resource speed limits: maximal rate of resource variation. New Journal of Physics, 2022, 24, 065001.	2.9	14
5	Photon and phonon statistics in a qubit-plasmon-phonon ultrastrong-coupling system. Physical Review A, 2022, 105, .	2.5	3
6	Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum Information Processing, 2022, 21, .	2.2	14
7	Quantum acceleration by an ancillary system in non-Markovian environments. Quantum Information Processing, 2021, 20, 1.	2.2	3
8	Switchable and Enhanced Absorption via Qubit-Mechanical Nonlinear Interaction in a Hybrid Optomechanical System. International Journal of Theoretical Physics, 2021, 60, 739-753.	1.2	9
9	The best approximation of a given qubit state with the limited pure-state set. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 085205.	2.1	Ο
10	Quantifying entanglement in terms of an operational way*. Chinese Physics B, 2021, 30, 020302.	1.4	0
11	The optimal approximation of qubit states with limited quantum states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 398, 127286.	2.1	3
12	Quantum speed limit for the maximum coherent state under the squeezed environment*. Chinese Physics B, 2021, 30, 090308.	1.4	4
13	Effects of the Coherence on the Parameter Estimation in a Quantum Metrology Scheme with Driving Fields. International Journal of Theoretical Physics, 2020, 59, 993-1008.	1.2	1
14	Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Physica Scripta, 2020, 95, 035108.	2.5	14
15	Tunable optical response of an optomechanical system with two mechanically driven resonators. Physica Scripta, 2020, 95, 045105.	2.5	11
16	The bounds of Fisher information induced by the superposed input states. Quantum Information Processing, 2020, 19, 1.	2.2	0
17	Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Information Processing, 2020, 19, 1.	2.2	20
18	Margolus–Levitin speed limit across quantum to classical regimes based on trace distance*. Chinese Physics B, 2020, 29, 050302.	1.4	5

#	Article	IF	CITATIONS
19	Extremal photon statistics signal the extremal entanglement. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 155501.	1.5	Ο
20	Quantifying coherence in terms of the pure-state coherence. Physical Review A, 2020, 101, .	2.5	14
21	Quantum speed limit based on the bound of Bures angle. Scientific Reports, 2020, 10, 5500.	3.3	14
22	Multifunctional quantum thermal device utilizing three qubits. Physical Review E, 2019, 99, 032112.	2.1	31
23	Complementarity relations of the measurement-induced average total coherence. Physica Scripta, 2019, 94, 025102.	2.5	0
24	Analytically Computable Symmetric Quantum Correlations. Annalen Der Physik, 2019, 531, 1800178.	2.4	2
25	Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment. Annals of Physics, 2018, 390, 71-82.	2.8	18
26	Coherence measure in terms of the Tsallis relative α entropy. Scientific Reports, 2018, 8, 299.	3.3	42
27	Measurement-induced nonlocality in arbitrary dimensions in terms of the inverse approximate joint diagonalization. Physical Review A, 2018, 97, .	2.5	4
28	Operational resource theory of total quantum coherence. Annals of Physics, 2018, 388, 305-314.	2.8	13
29	Quantum speed limit for a mixed initial state. Physical Review A, 2018, 98, .	2.5	40
30	Tunable Optomechanically Induced Transparency and Fano Resonance in Optomechanical System with Levitated Nanosphere. International Journal of Theoretical Physics, 2018, 57, 2814-2827.	1.2	17
31	One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system. Quantum Information Processing, 2018, 17, 1.	2.2	9
32	Optical response mediated by a two-level system in the hybrid optomechanical system. Quantum Information Processing, 2018, 17, 1.	2.2	5
33	Quantum thermal transistor based on qubit-qutrit coupling. Physical Review E, 2018, 98, 022118.	2.1	40
34	Deterministic transfer of an unknown qutrit state assisted by the low- Q microwave resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1727-1731.	2.1	2
35	Controllable optomechanically induced transparency in coupled optomechanical systems. European Physical Journal D, 2017, 71, 1.	1.3	19
36	Stronger uncertainty relations with improvable upper and lower bounds. Quantum Information Processing, 2017, 16, 1.	2.2	10

#	Article	IF	CITATIONS
37	The classical correlation limits the ability of the measurement-induced average coherence. Scientific Reports, 2017, 7, 45598.	3.3	19
38	The Precision of Parameter Estimation for Dephasing Model Under Squeezed Reservoir. International Journal of Theoretical Physics, 2017, 56, 1198-1207.	1.2	5
39	Circuit QED: cross-Kerr effect induced by a superconducting qutrit without classical pulses. Quantum Information Processing, 2017, 16, 1.	2.2	12
40	Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. Physical Review E, 2017, 96, 052126.	2.1	13
41	Quantum coherence via skew information and its polygamy. Physical Review A, 2017, 95, .	2.5	158
42	The Measurement-Disturbance Relation and the Disturbance Trade-off Relation in Terms of Relative Entropy. International Journal of Theoretical Physics, 2016, 55, 3943-3953.	1.2	3
43	Distribution of standard deviation of an observable among superposed states. Annals of Physics, 2016, 373, 43-51.	2.8	1
44	Optimal Photon Blockade on the Maximal Atomic Coherence. International Journal of Theoretical Physics, 2016, 55, 5239-5249.	1.2	1
45	Perfect photon absorption in hybrid atom-optomechanical system. Europhysics Letters, 2016, 115, 64002.	2.0	8
46	Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Scientific Reports, 2016, 6, 28830.	3.3	36
47	Photon statistics on the extreme entanglement. Scientific Reports, 2016, 6, 24098.	3.3	10
48	Total quantum coherence and its applications. Quantum Information Processing, 2016, 15, 3773-3784.	2.2	28
49	Weak Measurements Destroy Too Much Quantum Correlation. International Journal of Theoretical Physics, 2016, 55, 62-70.	1.2	1
50	The multistability in the coupled semiconductor microcavities. International Journal of Quantum Information, 2015, 13, 1550053.	1.1	6
51	The initial-state dependence of the quantum speed limit. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 045301.	2.1	35
52	Heat Current and Quantum Correlation Subject to the Nonequilibrium Squeezed Reservoirs. International Journal of Theoretical Physics, 2015, 54, 2942-2951.	1.2	0
53	Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory. Scientific Reports, 2015, 5, 11701.	3.3	66
54	Rényi entropy uncertainty relation for successive projective measurements. Quantum Information Processing, 2015, 14, 2239-2253.	2.2	45

#	Article	IF	CITATIONS
55	The effect of center-of-mass motion on photon statistics. Annals of Physics, 2015, 361, 563-573.	2.8	4
56	Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Physical Review E, 2014, 90, 052142.	2.1	27
57	The roles of quantum correlations in quantum cloning. European Physical Journal D, 2014, 68, 1.	1.3	0
58	Uncertainty-induced quantum nonlocality. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 344-347.	2.1	79
59	The Roles of a Quantum Channel on a Quantum State. International Journal of Theoretical Physics, 2014, 53, 715-726.	1.2	7
60	Quantum correlation cost of the weak measurement. Annals of Physics, 2014, 351, 104-111.	2.8	3
61	Quantum correlation measure in arbitrary bipartite systems. Europhysics Letters, 2014, 107, 10007.	2.0	20
62	Quantum correlation via quantum coherence. Quantum Information Processing, 2014, 13, 1437-1456.	2.2	13
63	Non-classicalities via perturbing local unitary operations. European Physical Journal D, 2013, 67, 1.	1.3	3
64	Nondestructive Probing Scheme of Quantum State Without Quantum Correlation. International Journal of Theoretical Physics, 2013, 52, 3676-3682.	1.2	0
65	Dual roles of quantum discord in a nondemolition probing task. Physical Review A, 2013, 87, .	2.5	8
66	Entangling power in deterministic quantum computation with one qubit. Physical Review A, 2013, 87, .	2.5	6
67	QUANTUM CORRELATIONS IN THE ENTANGLEMENT DISTILLATION PROTOCOLS. International Journal of Quantum Information, 2013, 11, 1350029.	1.1	0
68	Direct scheme for measuring the geometric quantum discord. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 115308.	2.1	28
69	Quantum dissonance is rejected in an overlap measurement scheme. Physical Review A, 2012, 86, .	2.5	8
70	Direct measure of quantum correlation. Physical Review A, 2011, 84, .	2.5	18
71	Bipartite concurrence and localized coherence. Physical Review A, 2009, 80, .	2.5	30
72	Evolution of entanglement for quantum mixed states. Physical Review A, 2008, 78, .	2.5	24

#	Article	IF	CITATIONS
73	Genuine tripartite entanglement monotone of(2⊗2⊗n)-dimensional systems. Physical Review A, 2008, 77, .	2.5	11
74	Measurable entanglement for tripartite quantum pure states of qubits. Physical Review A, 2007, 76, .	2.5	34
75	Remote preparation of a qudit using maximally entangled states of qubits. Physical Review A, 2006, 73, .	2.5	89
76	Existence criterion of genuine tripartite entanglement. Physical Review A, 2006, 73, .	2.5	6
77	Separability criterion of tripartite qubit systems. Physical Review A, 2005, 72, .	2.5	37
78	Free entanglement measure of multiparticle quantum states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 330, 377-383.	2.1	19
79	Generalization of concurrence vectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 364-370.	2.1	3