## Laura Tedone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910440/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Radical scavenging activity and metabolomic profiling study of ylang-ylang essential oils based on<br>high-performance thin-layer chromatography and multivariate statistical analysis. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122861. | 2.3 | 9         |
| 2  | Random Forests machine learning applied to gas chromatography – Mass spectrometry derived<br>average mass spectrum data sets for classification and characterisation of essential oils. Talanta,<br>2020, 208, 120471.                                                                                   | 5.5 | 29        |
| 3  | Distinct Drimane Chemotypes in Tasmanian Mountain Pepper ( <i>Tasmannia lanceolata</i> ): Differences<br>in the Profiles of Pungent Leaf Phytochemicals Associated with Altitudinal Cline. Journal of<br>Agricultural and Food Chemistry, 2020, 68, 315-322.                                             | 5.2 | 1         |
| 4  | Characterisation of complex perfume and essential oil blends using multivariate curve<br>resolution-alternating least squares algorithms on average mass spectrum from GC-MS. Talanta, 2020,<br>219, 121208.                                                                                             | 5.5 | 7         |
| 5  | Hop (Humulus lupulus L.) Volatiles Variation During Storage. Journal of the American Society of<br>Brewing Chemists, 2020, 78, 114-125.                                                                                                                                                                  | 1.1 | 2         |
| 6  | Comprehensive characterisation of ylang-ylang essential oils according to distillation time, origin,<br>and chemical composition using a multivariate approach applied to average mass spectra and<br>segmented average mass spectral data. Journal of Chromatography A, 2020, 1618, 460853.             | 3.7 | 7         |
| 7  | Multidimensional Gas Chromatography in Essential Oil Analysis. Part 2: Application to Characterisation and Identification. Chromatographia, 2019, 82, 399-414.                                                                                                                                           | 1.3 | 22        |
| 8  | Multidimensional Gas Chromatography in Essential Oil Analysis. PartÂ1: Technical Developments.<br>Chromatographia, 2019, 82, 377-398.                                                                                                                                                                    | 1.3 | 20        |
| 9  | Chemotyping of new hop ( Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight mass spectrometry. Journal of Chromatography A, 2018, 1536, 110-121.                                                                          | 3.7 | 29        |
| 10 | Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D<br>Printing. Analytical Chemistry, 2018, 90, 12081-12089.                                                                                                                                               | 6.5 | 55        |
| 11 | Phytochemical profile of the rare, ancient clone Lomatia tasmanica and comparison to other endemic<br>Tasmanian species L. tinctoria and L. polymorpha. Phytochemistry, 2018, 153, 74-78.                                                                                                                | 2.9 | 10        |
| 12 | Direct Production of Microstructured Surfaces for Planar Chromatography Using 3D Printing.<br>Analytical Chemistry, 2017, 89, 2457-2463.                                                                                                                                                                 | 6.5 | 53        |
| 13 | Parallel comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2017, 1524, 202-209.                                                                                                                                                                                             | 3.7 | 7         |
| 14 | Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering. Analytical Chemistry, 2016, 88, 1593-1600.                                                                                                                                                                                 | 6.5 | 22        |
| 15 | Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses. LWT - Food Science and Technology, 2015, 60, 905-913.                                                                                                                       | 5.2 | 42        |
| 16 | Monodimensional (GC–FID and GC–MS) and Comprehensive Twoâ€dimensional Gas Chromatography for<br>the Assessment of Volatiles and Fatty Acids from <i>Ruta chalepensis</i> Aerial Parts. Phytochemical<br>Analysis, 2014, 25, 468-475.                                                                     | 2.4 | 14        |
| 17 | Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chemistry, 2014, 145, 932-940.                                                                                                                                          | 8.2 | 55        |
| 18 | Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles. Analytica Chimica Acta, 2013, 770, 1-6.                                                                                                                                                          | 5.4 | 65        |

Laura Tedone

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by<br>means of three-dimensional preparative gas chromatography and nuclear magnetic<br>resonance/infrared/mass spectrometric analysis. Analytica Chimica Acta, 2013, 785, 119-125. | 5.4 | 36        |
| 20 | Reliable Identification and Quantification of Volatile Components of Sage Essential Oil Using Ultra<br>HRGC. Natural Product Communications, 2011, 6, 1934578X1100600.                                                                                                           | 0.5 | 1         |
| 21 | Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil. Journal of Chromatography A, 2011, 1218, 137-142.                                                             | 3.7 | 42        |
| 22 | The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania. Marine Drugs,<br>2009, 7, 361-366.                                                                                                                                                            | 4.6 | 78        |