Daria Camilla Boffito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910281/publications.pdf

Version: 2024-02-01

94 papers 2,107 citations

236925 25 h-index 289244 40 g-index

96 all docs

96
docs citations

96 times ranked 2075 citing authors

#	Article	IF	CITATIONS
1	Sonoprocessing: From Concepts to Large-Scale Reactors. Chemical Reviews, 2022, 122, 3219-3258.	47.7	61
2	Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems – a review of reviews. Environmental Sciences: Processes and Impacts, 2022, 24, 172-195.	3.5	22
3	Multivariate metal–organic framework MTV-MIL-101 <i>via</i> post-synthetic cation exchange: is it truly achievable?. Dalton Transactions, 2022, 51, 3280-3294.	3.3	5
4	Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS Nano, 2022, 16, 1689-1707.	14.6	35
5	Facile solvothermal synthesis of a MIL-47(V) metal–organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties. RSC Advances, 2022, 12, 9008-9022.	3.6	15
6	Microwave-Assisted Synthesis of the Flexible Iron-based MIL-88B Metal–Organic Framework for Advanced Energetic Systems. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2538-2556.	3.7	10
7	Perspectives on the process intensification of CO2 capture and utilization. Chemical Engineering and Processing: Process Intensification, 2022, 176, 108958.	3.6	24
8	Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catalysis, 2022, 12, 6887-6905.	11.2	27
9	Ultrasound-assisted carboxymethylation of LignoForce Kraft lignin to produce biodispersants. Journal of Cleaner Production, 2022, 366, 132776.	9.3	7
10	Application of photocatalytic ozonation with a WO3/TiO2 catalyst for PFAS removal under UVA/visible light. Science of the Total Environment, 2022, 843, 157006.	8.0	20
11	Visible-light-driven photocatalytic disinfection of raw surface waters (300–5000 CFU/mL) using reusable coated Ru/WO3/ZrO2. Journal of Hazardous Materials, 2021, 407, 123514, one of his property of transesterification of non-edible Moringa oleitera oil over a MgO/K <mml:math< td=""><td>12.4</td><td>29</td></mml:math<>	12.4	29
12	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1407" altimg="si3.svg"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow> <	6.1 ub> <td>30 :mrow></td>	30 :mrow>
13	catalyst derived from poultry skeletal waste. Environmental Technology and Innovation, 2021, 21, 1012 From CO ₂ to Formic Acid Fuel Cells. Industrial & Engineering Chemistry Research, 2021, 60, 803-815.	3.7	70
14	Portable, stable, and sensitive assay to detect phosphate in water with gold nanoparticles (AuNPs) and dextran tablet. Analyst, The, 2021, 146, 3697-3708.	3.5	11
15	Synthesis of a novel Ce(<scp>iii</scp>)/melamine coordination polymer and its application for corrosion protection of AA2024 in NaCl solution. RSC Advances, 2021, 11, 6330-6345.	3.6	8
16	Toward Scaling-Up Photocatalytic Process for Multiphase Environmental Applications. Catalysts, 2021, 11, 562.	3.5	42
17	Electron paramagnetic resonance of sonicated powder suspensions in organic solvents. Ultrasonics Sonochemistry, 2021, 73, 105544.	8.2	11
18	Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100456.	2.9	21

#	Article	IF	CITATIONS
19	Ni/CeO2 promoted Ru and Pt supported on FeCrAl gauze for cycling methane catalytic partial oxidationâ€"CPOX. Applied Catalysis B: Environmental, 2021, 286, 119849.	20.2	15
20	Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrasonics Sonochemistry, 2021, 75, 105615.	8.2	26
21	Photochemical Synthesis of Gold and Silver Nanoparticlesâ€"A Review. Molecules, 2021, 26, 4585.	3.8	52
22	ZnAl hydrotalcites modified with nanocomposites nZVl–PAA for environmental remediation. Journal of Materials Research and Technology, 2021, 14, 2243-2256.	5.8	6
23	Sonochemical synthesis of porous gold nano- and microparticles in a Rosette cell. Ultrasonics Sonochemistry, 2021, 79, 105744.	8.2	6
24	Bismuth Oxyhalides for NOx Degradation under Visible Light: The Role of the Chloride Precursor. Catalysts, 2021, 11, 81.	3.5	4
25	Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A, 2021, 9, 22159-22217.	10.3	100
26	Solar Light Photoactive Floating Polyaniline/TiO2 Composites for Water Remediation. Nanomaterials, 2021, 11, 3071.	4.1	10
27	Photocatalytic degradation of NOx and ethanol in the gas phase by spray dried Ce-TiO2. Journal of Environmental Chemical Engineering, 2021, 9, 106813.	6.7	9
28	Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts. Chemical Engineering Journal, 2020, 380, 122470.	12.7	17
29	Asymmetric Al2O3 and PES/Al2O3 hollow fiber membranes for green tea extract clarification. Journal of Food Engineering, 2020, 277, 109889.	5. 2	7
30	Thermocatalytic Hydrodeoxygenation and Depolymerization of Waste Lignin to Oxygenates and Biofuels in a Continuous Flow Reactor at Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 13195-13205.	6.7	12
31	Gas–Solid Oxidation of Unwashed Lignin to Carboxylic Acids. Energy & Fuels, 2020, 34, 9683-9696.	5.1	5
32	Distributed production: Scaleâ€up vs experience. Journal of Advanced Manufacturing and Processing, 2020, 2, .	2.4	19
33	A modified sol-gel synthesis to yield a stable Fe3+/ZnO photocatalyst: Degradation of water pollutants and mechanistic insights under UV and visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104282.	6.7	30
34	Process intensification connects scales and disciplines towards sustainability. Canadian Journal of Chemical Engineering, 2020, 98, 2489-2506.	1.7	31
35	Waste sludge from shipping docks as a catalyst to remove amoxicillin in water with hydrogen peroxide and ultrasound. Ultrasonics Sonochemistry, 2020, 68, 105187.	8.2	40
36	Experimental methods in chemical engineering: Xâ€ray diffraction spectroscopy— <scp>XRD</scp> . Canadian Journal of Chemical Engineering, 2020, 98, 1255-1266.	1.7	100

#	Article	IF	CITATIONS
37	FeCrAl as a Catalyst Support. Chemical Reviews, 2020, 120, 7516-7550.	47.7	59
38	Low-cost synthesis of Cu/l±-Fe2O3 from natural HFeO2: Application in 4-nitrophenol reduction. Journal of Environmental Chemical Engineering, 2020, 8, 104214.	6.7	20
39	Sonophotocatalytic degradation of sodium diclofenac using low power ultrasound and micro sized TiO2. Ultrasonics Sonochemistry, 2020, 67, 105123.	8.2	35
40	LiFePO4 spray drying scale-up and carbon-cage for improved cyclability. Journal of Power Sources, 2020, 462, 228103.	7.8	19
41	A Kinetic Study on the Degradation of Acetaminophen and Amoxicillin in Water by Ultrasound. ChemistrySelect, 2020, 5, 14986-14992.	1.5	6
42	Process intensification education contributes to sustainable development goals. Part 2. Education for Chemical Engineers, 2020, 32, 15-24.	4.8	28
43	Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering, 2019, 241, 97-104.	5.2	45
44	Spray-dried microporous Pt/TiO2 degrades 4-chlorophenol under UV and visible light. Journal of Environmental Chemical Engineering, 2019, 7, 103267.	6.7	20
45	Intellectual contributions meriting authorship: Survey results from the top cited authors across all science categories. PLoS ONE, 2019, 14, e0198117.	2.5	42
46	Influence of frequency and amplitude on the mucus viscoelasticity of the novel mechano-acoustic Frequencerâ, ¢. Respiratory Medicine, 2019, 153, 52-59.	2.9	5
47	Experimental methods in chemical engineering: Xâ€ray photoelectron spectroscopyâ€XPS. Canadian Journal of Chemical Engineering, 2019, 97, 2588-2593.	1.7	32
48	Correlation preparation parameters/activity for microTiO2 decorated with SilverNPs for NOx photodegradation under LED light. Applied Catalysis B: Environmental, 2019, 253, 218-225.	20.2	29
49	Ultrasonic Intensification To Produce Diester Biolubricants. Industrial & Engineering Chemistry Research, 2019, 58, 7957-7963.	3.7	14
50	Process Intensification and Catalysis. , 2019, , .		3
51	Enhanced photocatalytic activity of Pt-TiO2/WO3 hybrid material with energy storage ability. Applied Catalysis B: Environmental, 2019, 252, 77-85.	20.2	79
52	The Sonophotocatalytic Degradation of Pharmaceuticals in Water by MnOx-TiO2 Systems with Tuned Band-Gaps. Catalysts, 2019, 9, 949.	3.5	23
53	Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleĀfera seeds). Ultrasonics Sonochemistry, 2019, 51, 111-119.	8.2	61
54	Ultrasound assisted wet stirred media mill of high concentration LiFePO ₄ and catalysts. Canadian Journal of Chemical Engineering, 2019, 97, 2242-2250.	1.7	9

#	Article	IF	CITATIONS
55	Cs, V, Cu Keggin-type catalysts partially oxidize 2-methyl-1,3-propanediol to methacrylic acid. Applied Catalysis A: General, 2018, 554, 105-116.	4.3	19
56	Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Applied Catalysis B: Environmental, 2018, 226, 311-323.	20.2	170
57	Natural \hat{l} ±-Fe 2 O 3 as an efficient catalyst for the p-nitrophenol reduction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 126-134.	3.5	46
58	Ecoâ€friendly synthesis from industrial wastewater of Fe and Cu nanoparticles over NaX zeolite and activity in 4â€nitrophenol reduction. Canadian Journal of Chemical Engineering, 2018, 96, 1566-1575.	1.7	12
59	Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere, 2018, 193, 198-206.	8.2	47
60	Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval. Nanomaterials, 2018, 8, 686.	4.1	22
61	Ultrasound-assisted impregnation for high temperature Fischer-Tropsch catalysts. Ultrasonics Sonochemistry, 2018, 48, 523-531.	8.2	15
62	CaO and isopropanol transesterify and crack triglycerides to isopropyl esters and green diesel. Energy Conversion and Management, 2017, 139, 71-78.	9.2	17
63	Spray dried SiO 2 WO 3 /TiO 2 and SiO 2 vanadium pyrophosphate core-shell catalysts. Powder Technology, 2017, 316, 434-440.	4.2	25
64	How do you write and present research well? Answers to the 20 questions. Canadian Journal of Chemical Engineering, 2017, 95, 11-20.	1.7	2
65	How do you write and present research well? 13-Set axis titles to within 1 pt of article text. Canadian Journal of Chemical Engineering, 2016, 94, $1633-1635$.	1.7	3
66	How do you write and present research well? 15â€"Prepare to say less than you prepare. Canadian Journal of Chemical Engineering, 2016, 94, 1834-1837.	1.7	4
67	Gasâ€toâ€liquids processes: Preface. Canadian Journal of Chemical Engineering, 2016, 94, 605-606.	1.7	5
68	How do you write and present research well? 12-Design graphs to fit within the journal column width. Canadian Journal of Chemical Engineering, 2016, 94, 1629-1632.	1.7	5
69	How do you write and present research well? 14-Favour images over text in graphical abstracts. Canadian Journal of Chemical Engineering, 2016, 94, 1636-1639.	1.7	2
70	Microâ€syngas technology options for GtL. Canadian Journal of Chemical Engineering, 2016, 94, 613-622.	1.7	19
71	How do you write and present research well? 7â€"Cite to get cited. Canadian Journal of Chemical Engineering, 2016, 94, 805-808.	1.7	11
72	How do you write and present research well? 5 –revise sentences over 30 words long. Canadian Journal of Chemical Engineering, 2016, 94, 405-407.	1.7	2

#	Article	IF	CITATIONS
73	How do you write and present research well? 3â€"shave your text with Occam's Razor. Canadian Journal of Chemical Engineering, 2016, 94, 3-6.	1.7	5
74	Gas–solid conversion of lignin to carboxylic acids. Reaction Chemistry and Engineering, 2016, 1, 397-408.	3.7	21
75	How do you write and present research well? 20–state the novelty of your work explicitly. Canadian Journal of Chemical Engineering, 2016, 94, 2240-2242.	1.7	0
76	How do you write and present research well? 18â€"Publish and flourish. Canadian Journal of Chemical Engineering, 2016, 94, 2179-2185.	1.7	1
77	How do you write and present research well? 19-emulate articles in high impact factor journals. Canadian Journal of Chemical Engineering, 2016, 94, 2237-2239.	1.7	0
78	How do you write and present research well? 16-Target an audience and promote. Canadian Journal of Chemical Engineering, 2016, 94, 1838-1840.	1.7	4
79	How do you write and present research well? 17—Submit your manuscript to the journal you cite most. Canadian Journal of Chemical Engineering, 2016, 94, 2174-2178.	1.7	1
80	How do you write and present research well? $11\hat{a}\in$ Respect SI writing conventions. Canadian Journal of Chemical Engineering, 2016, 94, 1431-1434.	1.7	4
81	How do you write and present research well? 9-show and state what error bars represent. Canadian Journal of Chemical Engineering, 2016, 94, 1221-1224.	1.7	8
82	Partial oxidation of methane to syngas over Pt/Rh/MgO catalyst supported on FeCralloy woven fibre. Canadian Journal of Chemical Engineering, 2016, 94, 642-649.	1.7	14
83	How do you write and present research well? 6â€"Tell it in the title. Canadian Journal of Chemical Engineering, 2016, 94, 713-715.	1.7	6
84	How do you write and present research well? 8 â€" Assign authorship according to intellectual involvement. Canadian Journal of Chemical Engineering, 2016, 94, 1127-1134.	1.7	12
85	How do you write and present research well? 10â€"State the uncertainty, but not too precisely. Canadian Journal of Chemical Engineering, 2016, 94, 1425-1430.	1.7	9
86	Response to â€~Comment on "How do you write and present research well?â€â€™. Canadian Journal of Chemical Engineering, 2016, 94, 201-201.	1.7	2
87	How do you write and present research well? Q4 – Do not metastasize with metadiscourse. Canadian Journal of Chemical Engineering, 2016, 94, 205-208.	1.7	8
88	Pt on Fecralloy catalyses methane partial oxidation to syngas at high pressure. Catalysis Today, 2016, 270, 43-50.	4.4	15
89	How do you write and present research well?. Canadian Journal of Chemical Engineering, 2015, 93, 1693-1696.	1.7	24
90	How do you write and present research well? 1 - admit that you did it. Canadian Journal of Chemical Engineering, 2015, 93, 1889-1890.	1.7	7

#	Article	IF	CITATIONS
91	How do you write and present research well? 2 –Replace 007 with an explicit agent. Canadian Journal of Chemical Engineering, 2015, 93, 2095-2097.	1.7	5
92	Gasâ€Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum–Vanadium–Molybdenum. ChemSusChem, 2015, 8, 3424-3432.	6.8	31
93	Thermogravimetric heat and mass transfer: Modeling of bitumen pyrolysis. Fuel, 2015, 143, 253-261.	6.4	18

Vegetable Oil Deacidification by Methanol Heterogeneously Catalyzed Esterification in (Monophasic) Tj ETQq0 0 0 ggBT /Overlock 10 Tf