
## Tom Birger Granström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910246/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reducing agents assisted fed-batch fermentation to enhance ABE yields. Energy Conversion and Management, 2021, 227, 113627.                                                                                                      | 9.2 | 18        |
| 2  | Efficient Strategy to Alleviate the Inhibitory Effect of Lignin-Derived Compounds for Enhanced Butanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 1172-1179.                                                | 6.7 | 9         |
| 3  | Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of<br>steamâ€pretreated spruce in high solids concentration. Journal of Chemical Technology and<br>Biotechnology, 2016, 91, 1844-1852. | 3.2 | 13        |
| 4  | Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin<br>from Coleus forskohlii. Renewable Energy, 2016, 86, 594-601.                                                              | 8.9 | 20        |
| 5  | Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity. Journal of<br>Bioscience and Bioengineering, 2015, 120, 252-256.                                                                             | 2.2 | 8         |
| 6  | Biobutanol from Lignocellulosic Wastes. Biofuel and Biorefinery Technologies, 2015, , 289-324.                                                                                                                                   | 0.3 | 6         |
| 7  | Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol<br>production with an integrated DNA-technology approach. Renewable Energy, 2015, 83, 1076-1083.                                        | 8.9 | 28        |
| 8  | Continuous lignocellulosic ethanol production using Coleus forskohlii root hydrolysate. Fuel, 2014,<br>126, 77-84.                                                                                                               | 6.4 | 15        |
| 9  | Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides.<br>Applied Microbiology and Biotechnology, 2014, 98, 6307-6316.                                                                    | 3.6 | 27        |
| 10 | Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W. Extremophiles, 2014, 18, 1023-1034.                                                                               | 2.3 | 23        |
| 11 | Enhanced isopropanol–butanol–ethanol (IBE) production in immobilized column reactor using<br>modified Clostridium acetobutylicum DSM792. Fuel, 2014, 136, 226-232.                                                               | 6.4 | 38        |
| 12 | A green process for the production of butanol from butyraldehyde using alcohol dehydrogenase:<br>process details. RSC Advances, 2014, 4, 14597.                                                                                  | 3.6 | 7         |
| 13 | Oil palm empty fruit bunch to biofuels and chemicals via SO2–ethanol–water fractionation and ABE fermentation. Bioresource Technology, 2013, 147, 102-109.                                                                       | 9.6 | 19        |
| 14 | Biobutanol: the outlook of an academic and industrialist. RSC Advances, 2013, 3, 24734.                                                                                                                                          | 3.6 | 153       |
| 15 | Wood pulp as an immobilization matrix for the continuous production of isopropanol and butanol.<br>Journal of Industrial Microbiology and Biotechnology, 2013, 40, 209-215.                                                      | 3.0 | 38        |
| 16 | Wheat flour based propionic acid fermentation: An economic approach. Bioresource Technology, 2013, 129, 694-699.                                                                                                                 | 9.6 | 23        |
| 17 | The two stage immobilized column reactor with an integrated solvent recovery module for enhanced<br>ABE production. Bioresource Technology, 2013, 140, 269-276.                                                                  | 9.6 | 41        |
| 18 | Impact of varying lignocellulosic sugars on continuous solvent production in an immobilized column reactor. Bioresource Technology, 2013, 147, 299-306.                                                                          | 9.6 | 4         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Market refused vegetables as a supplement for improved acetone–butanol–ethanol production by<br>Clostridium acetobutylicum DSM 792. Industrial Crops and Products, 2013, 45, 349-354.                                     | 5.2 | 15        |
| 20 | Microbial production of xylitol and other polyols. , 2013, , 469-493.                                                                                                                                                     |     | 0         |
| 21 | Evaluation of Carbon and Electron Flow in <i>Lactobacillus brevis</i> as a Potential Host<br>for Heterologous 1-Butanol Biosynthesis. Advances in Microbiology, 2013, 03, 450-461.                                        | 0.6 | 3         |
| 22 | Butanol production from lignocellulosics. Biotechnology Letters, 2012, 34, 1415-1434.                                                                                                                                     | 2.2 | 98        |
| 23 | Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal<br>using Clostridium acetobutylicum B 5313. Bioresource Technology, 2012, 106, 110-116.                                         | 9.6 | 113       |
| 24 | Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized<br>Clostridium acetobutylicum DSM 792. Applied Microbiology and Biotechnology, 2012, 93, 2309-2316.                        | 3.6 | 72        |
| 25 | Semi-bleached paper and fermentation products from a larch biorefinery. Tappi Journal, 2012, 11, 31-39.                                                                                                                   | 0.5 | 2         |
| 26 | Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from<br>spruce. Bioresource Technology, 2011, 102, 10996-11002.                                                                      | 9.6 | 62        |
| 27 | Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Applied<br>Microbiology and Biotechnology, 2011, 91, 1305-1313.                                                                 | 3.6 | 89        |
| 28 | Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung, 2011, 65, .                                                                                | 1.9 | 22        |
| 29 | Production of Glucose by Starch and Cellulose Acid Hydrolysis and its Use as a Fuel in<br>Low-Temperature Direct-Mode Fuel Cells. Materials Science Forum, 2010, 638-642, 1164-1169.                                      | 0.3 | 11        |
| 30 | Biotechnological production of l-ribose from l-arabinose. Applied Microbiology and Biotechnology, 2009, 83, 77-83.                                                                                                        | 3.6 | 40        |
| 31 | Production of l-xylulose from xylitol by a newly isolated strain of Bacillus pallidus Y25 and<br>characterization of its relevant enzyme xylitol dehydrogenase. Enzyme and Microbial Technology,<br>2007, 40, 1206-1212.  | 3.2 | 35        |
| 32 | A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Applied<br>Microbiology and Biotechnology, 2007, 74, 273-276.                                                              | 3.6 | 177       |
| 33 | A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Applied Microbiology and<br>Biotechnology, 2007, 74, 277-281.                                                                                 | 3.6 | 124       |
| 34 | Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus<br>pallidus Y25 for rare sugar production. Applied Microbiology and Biotechnology, 2007, 76, 1297-1307.                    | 3.6 | 44        |
| 35 | Efficient biosynthesis of d-allose from d-psicose by cross-linked recombinant l-rhamnose isomerase:<br>Separation of product by ethanol crystallization. Journal of Bioscience and Bioengineering, 2006, 101,<br>340-345. | 2.2 | 62        |
| 36 | Large scale production of d-allose from d-psicose using continuous bioreactor and separation system. Enzyme and Microbial Technology, 2006, 38, 855-859.                                                                  | 3.2 | 44        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel substrate specificity of d-arabinose isomerase from Klebsiella pneumoniae and its application to production of d-altrose from d-psicose. Journal of Bioscience and Bioengineering, 2006, 102, 436-441.  | 2.2 | 46        |
| 38 | l-Xylose and l-lyxose production from xylitol using Alcaligenes 701B strain and immobilized<br>l-rhamnose isomerase enzyme. Enzyme and Microbial Technology, 2005, 36, 976-981.                               | 3.2 | 27        |
| 39 | Izumoring. Journal of Bioscience and Bioengineering, 2004, 97, 89-94.                                                                                                                                         | 2.2 | 309       |
| 40 | A novel enzymatic approach to the massproduction of L-galactose from L-sorbose. Journal of<br>Bioscience and Bioengineering, 2004, 97, 383-388.                                                               | 2.2 | 34        |
| 41 | Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for l-ribulose production. Applied Microbiology and Biotechnology, 2004, 63, 584-591.                               | 3.6 | 25        |
| 42 | Novel reactions of l-rhamnose isomerase from Pseudomonas stutzeri and its relation with d-xylose<br>isomerase via substrate specificity. Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 68-77. | 2.4 | 73        |
| 43 | Metabolic Flux Analysis of Candida tropicalis Growing on Xylose in an Oxygen-Limited Chemostat.<br>Metabolic Engineering, 2002, 4, 248-256.                                                                   | 7.0 | 31        |
| 44 | Controlled transient changes reveal differences in metabolite production in two Candida yeasts.<br>Applied Microbiology and Biotechnology, 2002, 58, 511-516.                                                 | 3.6 | 27        |
| 45 | Candida guilliermondii grows on rare pentoses – implications for production of pure xylitol.<br>Biotechnology Letters, 2002, 24, 507-510.                                                                     | 2.2 | 9         |
| 46 | Biodegradation of VOCs from printing press air by an on-site pilot plant bioscrubber and laboratory scale continuous yeast cultures. Biodegradation, 2002, 13, 155-162.                                       | 3.0 | 16        |
| 47 | Chemostat study of xylitol production by Candida guilliermondii. Applied Microbiology and Biotechnology, 2001, 55, 36-42.                                                                                     | 3.6 | 48        |
| 48 | Growth characteristics and metabolic flux analysis ofCandida milleri. Biotechnology and Bioengineering, 2000, 70, 197-207.                                                                                    | 3.3 | 24        |