Juliano Lemos Bicas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4910192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interplay between food and gut microbiota in health and disease. Food Research International, 2019, 115, 23-31.	2.9	168
2	Bio-oxidation of Terpenes: An Approach for the Flavor Industry. Chemical Reviews, 2009, 109, 4518-4531.	23.0	150
3	Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 2020, 137, 109682.	2.9	122
4	Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food and Chemical Toxicology, 2011, 49, 1610-1615.	1.8	117
5	Volatile constituents of exotic fruits from Brazil. Food Research International, 2011, 44, 1843-1855.	2.9	104
6	Bioaromas – Perspectives for sustainable development. Trends in Food Science and Technology, 2017, 62, 141-153.	7.8	72
7	Characterization of monoterpene biotransformation in two pseudomonads. Journal of Applied Microbiology, 2008, 105, 1991-2001.	1.4	69
8	Production, Properties, and Applications of α-Terpineol. Food and Bioprocess Technology, 2020, 13, 1261-1279.	2.6	66
9	Biotechnological production of bioflavors and functional sugars. Food Science and Technology, 2010, 30, .	0.8	60
10	Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1061-1070.	1.4	57
11	A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Process Biochemistry, 2010, 45, 481-486.	1.8	55
12	Biogeneration of aroma compounds. Current Opinion in Food Science, 2018, 19, 77-84.	4.1	47
13	Recent advances in the microbial and enzymatic production of aroma compounds. Current Opinion in Food Science, 2021, 37, 98-106.	4.1	40
14	Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. Bioresource Technology, 2019, 294, 122180.	4.8	37
15	Comparative study of the bioconversion process using R-(+)- and S-(–)-limonene as substrates for Fusarium oxysporum 152B. Food Chemistry, 2015, 174, 606-613.	4.2	33
16	Pigments from Antarctic bacteria and their biotechnological applications. Critical Reviews in Biotechnology, 2021, 41, 809-826.	5.1	31
17	The effect of α-terpineol enantiomers on biomarkers of rats fed a high-fat diet. Heliyon, 2020, 6, e03752.	1.4	25
18	Natural blue pigments and bikaverin. Microbiological Research, 2021, 244, 126653.	2.5	24

JULIANO LEMOS BICAS

#	Article	IF	CITATIONS
19	Monoterpene biotransformation by Colletotrichum species. Biotechnology Letters, 2018, 40, 561-567.	1.1	22
20	Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum. Food Chemistry, 2010, 120, 452-456.	4.2	21
21	Isolation and screening of d-limonene-resistant microorganisms. Brazilian Journal of Microbiology, 2007, 38, 563-567.	0.8	19
22	Iridoid blue-based pigments of Genipa americana L. (Rubiaceae) extract: Influence of pH and temperature on color stability and antioxidant capacity during in vitro simulated digestion. Food Chemistry, 2018, 263, 300-306.	4.2	19
23	Current perspectives in the biotechnological production of sweetening syrups and polyols. Current Opinion in Food Science, 2021, 41, 36-43.	4.1	17
24	Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources and Bioprocessing, 2020, 7, .	2.0	17
25	Extraction and purification of limonene-1,2-diol obtained from the fungal biotransformation of limonene. Separation and Purification Technology, 2021, 254, 117683.	3.9	13
26	Encapsulation of Bifidobacterium BB12® in alginate-jaboticaba peel blend increases encapsulation efficiency and bacterial survival under adverse conditions. Applied Microbiology and Biotechnology, 2021, 105, 119-127.	1.7	12
27	Establishment of culture conditions for bio-transformation of R-(+)-limonene to limonene-1,2-diol by Colletotrichum nymphaeae CBMAI 0864. Process Biochemistry, 2019, 78, 8-14.	1.8	10
28	Anti-inflammatory effects of monoterpenoids in rats with TNBS-induced colitis. PharmaNutrition, 2020, 14, 100240.	0.8	10
29	Use of methylene blue uptake for assessing cell viability of colony-forming microalgae. Algal Research, 2015, 8, 174-180.	2.4	9
30	Elaboration and Characterization of Apple Nectars Supplemented with Araçá-boi (Eugenia stipitata) Tj ETQq0 (0 0 rgBT /(Dverlock 10 T
31	Optimization of limonene biotransformation to limonene-1,2-diol by Colletotrichum nymphaeae CBMAI 0864. Process Biochemistry, 2019, 86, 25-31.	1.8	9
32	Effect of Limonene on Modulation of Palm Stearin Crystallization. Food Biophysics, 2021, 16, 1-14.	1.4	9
33	Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chemistry: X, 2022, 13, 100223.	1.8	9
34	Biotechnological production of non-volatile flavor compounds. Current Opinion in Food Science, 2021, 41, 26-35.	4.1	8
35	Skin microbiota as a therapeutic target for psoriasis treatment: Trends and perspectives. Journal of Cosmetic Dermatology, 2021, 20, 1066-1072.	0.8	7

36Non-nutrients and nutrients from Latin American fruits for the prevention of cardiovascular
diseases. Food Research International, 2021, 139, 109844.2.97

JULIANO LEMOS BICAS

#	Article	IF	CITATIONS
37	Antarctic Fungi as Producers of Pigments. , 2019, , 305-318.		6
38	The effects of limonene on the crystallization of palm oil. LWT - Food Science and Technology, 2020, 133, 110079.	2.5	6
39	Comparison of Two Methods for Counting Molds in Fermentations Using the Production of Bikaverin by Fusarium oxysporum CCT7620 as a Model. Current Microbiology, 2020, 77, 3671-3679.	1.0	4
40	Elaboration and Properties of an Oil-in-Water Nanoemulsion Loaded with a Terpene-Enriched Oil Mixture Obtained Biotechnologically. ACS Agricultural Science and Technology, 0, , .	1.0	4
41	Comprehensive study of α-terpineol-loaded oil-in-water (O/W) nanoemulsion: interfacial property, formulation, physical and chemical stability. Npj Science of Food, 2021, 5, 31.	2.5	4
42	Fusarium oxisporum alkaline lipase production using industrial residues as alternative medium components. Journal of Biotechnology, 2007, 131, S172.	1.9	3
43	Determination of Short Chain Fatty Acids in Mice Feces by Capillary Electrophoresis. Journal of the Brazilian Chemical Society, 2019, , .	0.6	3
44	Delaying crystallization in single fractionated palm olein with limonene addition. Food Research International, 2021, 145, 110387.	2.9	3
45	Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Research International, 2022, 153, 110894.	2.9	3
46	Lipase production by microorganisms isolated from the Serra de Ouro Branco State Park. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20190672.	0.3	2
47	Structural properties and evaluation of the antiproliferative activity of limoneneâ€1,2â€diol obtained by the fungal biotransformation of <i>R</i> â€(+)―and <i>S</i> â€(â^')â€Iimonene. Chirality, 2022, , .	1.3	2
48	Hidden Markov random field models applied to color homogeneity evaluation in dyed textile images. Environmetrics, 2020, 31, e2613.	0.6	1
49	1st International congress bioactive compounds 2018 – Food Design and Health Nutrition. Food Research International, 2020, 134, 109224.	2.9	1
50	Production of Aroma Compounds by White Biotechnology. RSC Green Chemistry, 2015, , 310-332.	0.0	1
51	Production and stability of Bacillus subtilis biosurfactants using cassava wastewater in a pilot scale. Journal of Biotechnology, 2007, 131, S172-S173.	1.9	Ο
52	Editorial for SLACA. LWT - Food Science and Technology, 2017, 76, 197.	2.5	0
53	Editorial on Food Science and its impact on a Changing World. Food Research International, 2019, 124, 108486.	2.9	0
54	Recovery and purification of bikaverin produced by Fusarium oxysporum CCT7620. Food Chemistry: X, 2021, 12, 100136.	1.8	0

#	Article	IF	CITATIONS
55	Relation of shear stress and KLa on bikaverin production by Fusarium oxysporum CCT7620 in a bioreactor. Bioprocess and Biosystems Engineering, 2022, , 1.	1.7	Ο