Tatsuji Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909927/publications.pdf

Version: 2024-02-01

279798 315739 1,724 63 23 38 citations h-index g-index papers 63 63 63 1612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gelation of konjac glucomannan by acetylmannan esterases from Aspergillus oryzae. Enzyme and Microbial Technology, 2022, 160, 110075.	3.2	3
2	Biochemical and structural characterization of a novel 4â€ <i>O</i> à€Î±â€ <scp>I</scp> â€rhamnosylâ€Î²â€ <scp>d</scp> â€glucuronidase from <i>Fusarium oxysporum< Journal, 2021, 288, 4918-4938.</i>	<∤ai⊋7 FEBS	9
3	Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. Journal of Biological Chemistry, 2021, 297, 101001.	3.4	7
4	Homogalacturonan and xylogalacturonan region specificity of self-cloning vector-expressed pectin methylesterases (AoPME1–3) in Aspergillus oryzae. Enzyme and Microbial Technology, 2021, 150, 109894.	3.2	5
5	NADPHâ€ŧoâ€NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. FEBS Letters, 2021, , .	2.8	5
6	Determination of chemical structure of pea pectin by using pectinolytic enzymes. Carbohydrate Polymers, 2020, 231, 115738.	10.2	27
7	Characterization of three GH35 \hat{l}^2 -galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Applied Microbiology and Biotechnology, 2020, 104, 1135-1148.	3.6	13
8	Substrate-recognition mechanism of tomato \hat{l}^2 -galactosidase 4 using X-ray crystallography and docking simulation. Planta, 2020, 252, 72.	3.2	3
9	Identification and characterization of ferulic acid esterase from Penicillium chrysogenum 31B: de-esterification of ferulic acid decorated with l-arabinofuranoses and d-galactopyranoses in sugar beet pectin. Enzyme and Microbial Technology, 2019, 131, 109380.	3.2	15
10	Crystal structure of exoâ€rhamnogalacturonan lyase from <i>Penicillium chrysogenum</i> as a member of polysaccharide lyase family 26. FEBS Letters, 2018, 592, 1378-1388.	2.8	16
11	Identification and characterization of GH62 bacterial α-l-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched l-arabinofuranoses in wheat arabinoxylan. Enzyme and Microbial Technology, 2018, 112, 22-28.	3.2	10
12	Identification and characterization of the first \hat{l}^2 -1,3-d-xylosidase from a gram-positive bacterium, Streptomyces sp. SWU10. Enzyme and Microbial Technology, 2018, 112, 72-78.	3.2	10
13	Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. FEBS Letters, 2018, 592, 4020-4027.	2.8	16
14	Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells. Foods, 2018, 7, 48.	4.3	28
15	Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzyme and Microbial Technology, 2017, 98, 76-85.	3.2	20
16	Purification, characterization, and overexpression of an endo-1,4-Î ² -mannanase from thermotolerant Bacillus sp. SWU60. World Journal of Microbiology and Biotechnology, 2017, 33, 53.	3.6	19
17	A novel \hat{l} ±-galactosidase from Fusarium oxysporum and its application in determining the structure of the gum arabic side chain. Enzyme and Microbial Technology, 2017, 103, 25-33.	3.2	22
18	Physiological functions of pyruvate:NADP+ oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1386-1393.	1.3	17

#	Article	IF	CITATIONS
19	Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1607-1611.	1.3	21
20	Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1403-1409.	1.3	7
21	Water-soluble ferulic acid derivatives improve amyloid- \hat{l}^2 -induced neuronal cell death and dysmnesia through inhibition of amyloid- \hat{l}^2 aggregation. Bioscience, Biotechnology and Biochemistry, 2016, 80, 547-553.	1.3	25
22	Biochemical Characterization and Overexpression of an Endo-rhamnogalacturonan Lyase from Penicillium chrysogenum. Molecular Biotechnology, 2015, 57, 539-548.	2.4	19
23	Identification and characterization of three Penicillium chrysogenum $\hat{I}\pm$ -l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme and Microbial Technology, 2015, 73-74, 65-71.	3.2	14
24	Alteration of Wax Ester Content and Composition in <i>Euglena gracilis</i> with Gene Silencing of 3â€ketoacyl oA Thiolase Isozymes. Lipids, 2015, 50, 483-492.	1.7	32
25	Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins. Applied Microbiology and Biotechnology, 2015, 99, 8515-8525.	3.6	14
26	A novel GH43 $\hat{1}$ ±-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan. Enzyme and Microbial Technology, 2014, 58-59, 80-86.	3.2	24
27	Expression and Characterization of Recombinant GH11 Xylanase from Thermotolerant Streptomyces sp. SWU10. Applied Biochemistry and Biotechnology, 2014, 172, 436-446.	2.9	15
28	Identification of an exo-ß-1,3-d-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Applied Microbiology and Biotechnology, 2013, 97, 9685-9694.	3.6	16
29	Purification, Characterization of GH11 Endo- \hat{l}^2 -1,4-xylanase from Thermotolerant Streptomyces sp. SWU10 and Overexpression in Pichia pastoris KM71H. Molecular Biotechnology, 2013, 54, 37-46.	2.4	18
30	Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Applied Microbiology and Biotechnology, 2013, 97, 5201-5213.	3.6	22
31	Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2013, 97, 2895-2906.	3.6	31
32	Substrate specificity and gene expression of two Penicillium chrysogenum \hat{l}_{\pm} -l-arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Applied Microbiology and Biotechnology, 2013, 97, 1121-1130.	3.6	34
33	Immunostimulatory Activity of Polysaccharides Isolated from <i>Caulerpa lentillifera</i> on Macrophage Cells. Bioscience, Biotechnology and Biochemistry, 2012, 76, 501-505.	1.3	71
34	Inhibition of Nitric Oxide Production and Inducible Nitric Oxide Synthase Expression by a Polymethoxyflavone from Young Fruits of <i>Citrus unshiu < /i> in Rat Primary Astrocytes. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1843-1848.</i>	1.3	43
35	Induction of Apoptosis in MCF-7 Cells by \hat{l}^2 -1,3-Xylooligosaccharides Prepared from (i) Caulerpa lentillifera (i). Bioscience, Biotechnology and Biochemistry, 2012, 76, 1032-1034.	1.3	48
36	Synthesis of highly water-soluble feruloyl diglycerols by esterification of an Aspergillus niger feruloyl esterase. Applied Microbiology and Biotechnology, 2012, 95, 615-622.	3.6	21

#	Article	IF	Citations
37	Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B. Applied Microbiology and Biotechnology, 2012, 93, 1087-1096.	3.6	23
38	Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Process Biochemistry, 2011, 46, 2255-2262.	3.7	36
39	Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2011, 90, 137-146.	3.6	57
40	Characterization of an exo- \hat{l}^2 -1,3-d-galactanase from Sphingomonas sp. 24T and its application to structural analysis of larch wood arabinogalactan. Applied Microbiology and Biotechnology, 2011, 90, 1701-1710.	3.6	20
41	High-resolution structure of exo-arabinanase from (i>Penicillium chrysogenum (i>. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 415-422.	2.5	14
42	Identification of two GH27 bifunctional proteins with \hat{l}^2 -L-arabinopyranosidase/ \hat{l} ±-D-galactopyranosidase activities from Fusarium oxysporum. Applied Microbiology and Biotechnology, 2010, 86, 1115-1124.	3.6	30
43	Purification, Characterization, and Overexpression of Thermophilic Pectate Lyase of <i>Bacillus </i> RN1 Isolated from a Hot Spring in Thailand. Bioscience, Biotechnology and Biochemistry, 2009, 73, 268-273.	1.3	30
44	Enzymatic Synthesis of Hydroxycinnamic Acid Glycerol Esters Using Type A Feruloyl Esterase from Aspergillus niger. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2606-2609.	1.3	23
45	Characterization of Fusarium oxysporum \hat{l}^2 -1,6-Galactanase, an Enzyme That Hydrolyzes Larch Wood Arabinogalactan. Applied and Environmental Microbiology, 2007, 73, 3109-3112.	3.1	26
46	Esterification of ferulic acid with polyols using a ferulic acid esterase from Aspergillus niger. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1071-1079.	2.4	67
47	Efficient Extraction of Ferulic Acid from Sugar Beet Pulp Using the Culture Supernatant of Penicillium chrysogenum. Journal of Applied Glycoscience (1999), 2005, 52, 115-120.	0.7	17
48	Molecular Identification of a Cold-adapted Endo-arabinanase of Penicillium chrysogenum. Journal of Applied Glycoscience (1999), 2005, 52, 369-372.	0.7	4
49	Transglycosylation catalyzed by a Penicillium chrysogenum exo-1,5-α-l-arabinanase. Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 85-90.	2.4	17
50	Molecular characterization of a Penicillium chrysogenum exo-1,5-α-L -arabinanase that is structurally distinct from other arabinan-degrading enzymes. FEBS Letters, 2004, 560, 199-204.	2.8	33
51	Exo-Arabinanase of Penicillium chrysogenum Able To Release Arabinobiose from α-1,5- l -Arabinan. Applied and Environmental Microbiology, 2001, 67, 3319-3321.	3.1	52
52	Biotechnological Processing of Textiles: Refinement of Cotton Fiber Using Protopectin-solubilizing Enayme. Journal of Fiber Science and Technology, 1999, 55, P127-P131.	0.0	0
53	Molecular Cloning and Nucleotide Sequence of an Endo-1,5-alpha-L-Arabinase Gene from Bacillus Subtilis. FEBS Journal, 1997, 245, 708-714.	0.2	23
54	Molecular cloning and nucleotide sequence of the gene encoding phosphate-inducible pectin lyase of Bacillus subtilis. FEBS Letters, 1996, 398, 269-273.	2.8	11

#	Article	IF	CITATION
55	Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry, 1995, 39, 821-823.	2.9	51
56	Enzymic pectin extraction from protopectins using microbial protopectinases. Process Biochemistry, 1995, 30, 403-409.	3.7	19
57	Enzymic Pectin Extraction from Protopectins Using Microbial Protopectinases. Process Biochemistry, 1995, 30, 403-409.	0.2	1
58	Purification, Characterization, and Production of Two Pectic Transeliminases with Protopectinase Activity fromBacillus subtilis. Bioscience, Biotechnology and Biochemistry, 1994, 58, 353-358.	1.3	44
59	Protopectinase-T: a rhamnogalacturonase able to solubilize protopectin from sugar beet. Carbohydrate Research, 1994, 259, 77-91.	2.3	29
60	Purification and Characterization of a Rhamnogalacturonase with Protopectinase Activity from Trametes sanguinea. FEBS Journal, 1994, 226, 285-291.	0.2	23
61	âŒ^Pectin, Pectinase, and Protopectinase: Production,âŒ^ Properties, and Applications. Advances in Applied Microbiology, 1993, 39, 213-294.	2.4	291
62	Studies on Protopectinase-C Mode of Action: Analysis of the Chemical Structure of the Specific Substrate in Sugar Beet Protopectin and Characterization of the Enzyme Activity. Bioscience, Biotechnology and Biochemistry, 1993, 57, 1832-1837.	1.3	22
63	Studies on enzymes produced by Bacillus. Part III. Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin Agricultural and Biological Chemistry, 1990, 54, 879-889.	0.3	41