
Diann J Prosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909625/publications.pdf Version: 2024-02-01

DIANN I PROSSER

#	Article	IF	CITATIONS
1	Avian influenza H5N1 viral and bird migration networks in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 172-177.	7.1	169
2	Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China. PLoS Pathogens, 2011, 7, e1001308.	4.7	163
3	Migration of Waterfowl in the East Asian Flyway and Spatial Relationship to HPAI H5N1 Outbreaks. Avian Diseases, 2010, 54, 466-476.	1.0	137
4	Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from largeâ€scale satellite telemetry. Journal of Applied Ecology, 2010, 47, 1147-1157.	4.0	126
5	Wild Bird Migration across the Qinghai-Tibetan Plateau: A Transmission Route for Highly Pathogenic H5N1. PLoS ONE, 2011, 6, e17622.	2.5	100
6	Flying Over an Infected Landscape: Distribution of Highly Pathogenic Avian Influenza H5N1 Risk in South Asia and Satellite Tracking of Wild Waterfowl. EcoHealth, 2010, 7, 448-458.	2.0	87
7	Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Movement Ecology, 2015, 3, 3.	2.8	65
8	Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway. PLoS ONE, 2012, 7, e30636.	2.5	63
9	Risks of Avian Influenza Transmission in Areas of Intensive Free-Ranging Duck Production with Wild Waterfowl. EcoHealth, 2014, 11, 109-119.	2.0	52
10	Mapping Avian Influenza Transmission Risk at the Interface of Domestic Poultry and Wild Birds. Frontiers in Public Health, 2013, 1, 28.	2.7	47
11	Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia. PLoS ONE, 2009, 4, e5729.	2.5	47
12	Satelliteâ€marked waterfowl reveal migratory connection between H5N1 outbreak areas in China and Mongolia. Ibis, 2009, 151, 568-576.	1.9	46
13	Victims and Vectors: Highly Pathogenic Avian Influenza H5N1 and the Ecology of Wild Birds. Avian Biology Research, 2010, 3, 51-73.	0.9	45
14	Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. Journal of Wildlife Management, 2022, 86, .	1.8	43
15	Persistence of Highly Pathogenic Avian Influenza H5N1 Virus Defined by Agro-Ecological Niche. EcoHealth, 2010, 7, 213-225.	2.0	40
16	A network approach to prioritize conservation efforts for migratory birds. Conservation Biology, 2020, 34, 416-426.	4.7	40
17	Modelling the distribution of chickens, ducks, and geese in China. Agriculture, Ecosystems and Environment, 2011, 141, 381-389.	5.3	33
18	Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201680.	2.6	33

DIANN J PROSSER

#	Article	IF	CITATIONS
19	Modelling the distribution of domestic ducks in Monsoon Asia. Agriculture, Ecosystems and Environment, 2011, 141, 373-380.	5.3	32
20	Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1. Viruses, 2013, 5, 2129-2152.	3.3	31
21	Confronting models with data: the challenges of estimating disease spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180435.	4.0	30
22	Impacts of Coastal Land Use and Shoreline Armoring on Estuarine Ecosystems: an Introduction to a Special Issue. Estuaries and Coasts, 2018, 41, 2-18.	2.2	26
23	Seasonal occurrence and abundance of dabbling ducks across the continental United States: Joint spatioâ€temporal modelling for the Genus Anas. Diversity and Distributions, 2019, 25, 1497-1508.	4.1	22
24	Responses of Salt Marsh Ecosystems to Mosquito Control Management Practices along the Atlantic Coast (U.S.A.). Restoration Ecology, 2012, 20, 395-404.	2.9	21
25	THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (<i>OXYURA JAMAICENSIS</i>) AND LESSER SCAUP (<i>AYTHYA AFFINIS</i>). Journal of Wildlife Diseases, 2017, 53, 832-842.	0.8	20
26	Movement analysis of free-grazing domestic ducks in Poyang Lake, China: a disease connection. International Journal of Geographical Information Science, 2016, 30, 869-880.	4.8	19
27	Movement patterns of Bar-headed Geese Anser indicus during breeding and post-breeding periods at Qinghai Lake, China. Journal of Ornithology, 2011, 152, 83-92.	1.1	18
28	Surveillance for highly pathogenic influenza A viruses in California during 2014–2015 provides insights into viral evolutionary pathways and the spatiotemporal extent of viruses in the Pacific Americas Flyway. Emerging Microbes and Infections, 2017, 6, 1-10.	6.5	18
29	Waterfowl Spring Migratory Behavior and Avian Influenza Transmission Risk in the Changing Landscape of the East Asian-Australasian Flyway. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	18
30	The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh. PLoS Computational Biology, 2018, 14, e1006439.	3.2	17
31	Effects of Local Shoreline and Subestuary Watershed Condition on Waterbird Community Integrity: Influences of Geospatial Scale and Season in the Chesapeake Bay. Estuaries and Coasts, 2018, 41, 207-222.	2.2	16
32	Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Scientific Reports, 2020, 10, 2592.	3.3	16
33	Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission. Avian Diseases, 2016, 60, 329-336.	1.0	15
34	Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity. Landscape Ecology, 2018, 33, 879-893.	4.2	15
35	Could Changes in the Agricultural Landscape of Northeastern China Have Influenced the Long-Distance Transmission of Highly Pathogenic Avian Influenza H5Nx Viruses?. Frontiers in Veterinary Science, 2017, 4, 225.	2.2	14
36	Pathways for avian influenza virus spread: GPS reveals wild waterfowl in commercial livestock facilities and connectivity with the natural wetland landscape. Transboundary and Emerging Diseases, 2022, 69, 2898-2912.	3.0	12

DIANN J PROSSER

#	Article	IF	CITATIONS
37	The spatial–temporal relationship of blueâ€winged teal to domestic poultry: Movement state modelling of a highly mobile avian influenza host. Journal of Applied Ecology, 2021, 58, 2040-2052.	4.0	11
38	Crossroads of highly pathogenic H5N1: overlap between wild and domestic birds in the Black Sea-Mediterranean impacts global transmission. Virus Evolution, 2021, 7, .	4.9	11
39	Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathogens, 2022, 18, e1010605.	4.7	9
40	A lesser scaup (<i>Aythya affinis</i>) naturally infected with Eurasian 2.3.4.4 highly pathogenic H5N1 avian influenza virus: Movement ecology and host factors. Transboundary and Emerging Diseases, 2022, 69, .	3.0	9
41	Tracking domestic ducks: A novel approach for documenting poultry market chains in the context of avian influenza transmission. Journal of Integrative Agriculture, 2016, 15, 1584-1594.	3.5	8
42	A new method for discovering behavior patterns among animal movements. International Journal of Geographical Information Science, 2016, 30, 929-947.	4.8	8
43	The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in surf scoters (Melanitta perspicillata). BMC Veterinary Research, 2020, 16, 351.	1.9	8
44	Tracking the Autumn Migration of the Bar-Headed Goose (<i>Anser indicus</i>) with Satellite Telemetry and Relationship to Environmental Conditions. International Journal of Zoology, 2011, 2011, 1-10.	0.8	7
45	The Pathogenesis of H7 Highly Pathogenic Avian Influenza Viruses in Lesser Scaup (Aythya affinis). Avian Diseases, 2019, 63, 230.	1.0	7
46	Clade 2.3.4.4 H5 North American Highly Pathogenic Avian Influenza Viruses Infect, but Do Not Cause Clinical Signs in, American Black Ducks (Anas rubripes). Avian Diseases, 2019, 63, 366.	1.0	6
47	Migration of Waterfowl in the East Asian Flyway and Spatial Relationship to HPAI H5N1 Outbreaks. Avian Diseases Digest, 2010, 5, e101-e102.	0.0	5
48	Himalayan Thoroughfare: Migratory Routes of Ducks over the Rooftop of the World. , 2017, , 30-44.		5
49	Species distribution modeling in regions of high need and limited data: waterfowl of China. Avian Research, 2018, 9, .	1.2	5
50	Movement ecology of five Afrotropical waterfowl species from Malawi, Mali and Nigeria. Ostrich, 2015, 86, 155-168.	1.1	4
51	Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Poultry Production, Delmarva, Maryland. Avian Diseases, 2016, 61, 128.	1.0	4
52	Standardization and Application of an Index of Community Integrity for Waterbirds in the Chesapeake Bay, USA. Waterbirds, 2017, 40, 233-251.	0.3	4
53	Do contrasting patterns of migration movements and disease outbreaks between congeneric waterfowl species reflect differing immunity?. Geospatial Health, 2021, 16, .	0.8	4
54	Goose Migration across the Himalayas: Migratory Routes and Movement Patterns of Bar-headed Geese.		3

54 , 0, , 15-29.

DIANN J PROSSER

#	Article	IF	CITATIONS
55	Assessing nest attentiveness of Common Terns via video cameras and temperature loggers. Avian Research, 2020, 11, .	1.2	3
56	Investigating Home Range, Movement Pattern, and Habitat Selection of Bar-headed Geese during Breeding Season at Qinghai Lake, China. Animals, 2018, 8, 182.	2.3	2
57	Eviction Notice: Observation of a Sterna hirundo (Common Tern) Usurping an Active Sternula antillarum (Least Tern) Nest. Northeastern Naturalist, 2019, 26, 609.	0.3	2
58	Discovering Loose Group Movement Patterns from Animal Trajectories. , 2015, , .		1
59	A Video Surveillance System to Monitor Breeding Colonies of Common Terns (Sterna) Tj ETQq1 1 0.784314	4 rgBT /Ov	verlock 10 Tf
60	Assessing beach and island habitat loss in the Chesapeake Bay and Delmarva coastal bay region, USA, through processing of Landsat imagery: A case study. Remote Sensing Applications: Society and Environment, 2019, 16, 100265.	1.5	1
61	Mining Continuous Activity Patterns from Animal Trajectory Data. Lecture Notes in Computer Science, 2014, , 239-252.	1.3	1
62	Using Thermal Infrared Cameras to Detect Avian Chicks at Various Distances and Vegetative Coverages. Journal of Fish and Wildlife Management, 2020, 11, 245-257.	0.9	1
63	LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. Journal of Wildlife Diseases, 2020, 56, 47-57.	0.8	1
64	Chewing Lice of Swan Geese (Anser cygnoides): New Host-Parasite Associations. Korean Journal of Parasitology, 2016, 54, 685-691.	1.3	0
65	The Aerosphere as a Network Connector of Organisms and Their Diseases. , 2017, , 427-464.		0

66 Wetland-Riparian Birds of the Mid-Atlantic Region., 2013, , 269-311.

0