Willem Bouten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4909486/publications.pdf Version: 2024-02-01

WILLEM ROLITEN

#	Article	IF	CITATIONS
1	A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 2003, 39, .	4.2	914
2	Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 2003, 39, .	4.2	479
3	Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resources Research, 2005, 41, .	4.2	472
4	Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, 2001, 245, 48-58.	5.4	274
5	A quantitative framework for assessing spatial flows of ecosystem services. Ecological Indicators, 2014, 39, 24-33.	6.3	247
6	Modeling water retention curves of sandy soils using neural networks. Water Resources Research, 1996, 32, 3033-3040.	4.2	231
7	A flexible GPS tracking system for studying bird behaviour at multiple scales. Journal of Ornithology, 2013, 154, 571-580.	1.1	228
8	Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology, 2000, 237, 40-57.	5.4	211
9	RNCEP: global weather and climate data at your fingertips. Methods in Ecology and Evolution, 2012, 3, 65-70.	5.2	199
10	Assessing Temporal Variations in Soil Water Composition with Time Domain Reflectometry. Soil Science Society of America Journal, 1995, 59, 689-698.	2.2	174
11	Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting. Journal of Hydrometeorology, 2006, 7, 548-565.	1.9	146
12	How Predictability of Feeding Patches Affects Home Range and Foraging Habitat Selection in Avian Social Scavengers?. PLoS ONE, 2013, 8, e53077.	2.5	143
13	Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment, 2011, 115, 2976-2985.	11.0	141
14	Toward improved identifiability of hydrologic model parameters: The information content of experimental data. Water Resources Research, 2002, 38, 48-1-48-13.	4.2	135
15	Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. Journal of Hydrology, 2002, 269, 194-207.	5.4	129
16	From Sensor Data to Animal Behaviour: An Oystercatcher Example. PLoS ONE, 2012, 7, e37997.	2.5	119
17	Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand. Water Resources Research, 1992, 28, 3227-3233.	4.2	114
18	Frequency domain analysis of time domain reflectometry waveforms: 2. A four-component complex dielectric mixing model for soils. Water Resources Research, 1994, 30, 201-209.	4.2	101

#	Article	IF	CITATIONS
19	Information Content of Data for Identifying Soil Hydraulic Parameters from Outflow Experiments. Soil Science Society of America Journal, 2001, 65, 19-27.	2.2	99
20	Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model. Journal of Hydrology, 2006, 325, 288-307.	5.4	95
21	Modeling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiology, 2000, 20, 115-122.	3.1	93
22	Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. Journal of Avian Biology, 2015, 46, 25-39.	1.2	91
23	Can wind help explain seasonal differences in avian migration speed?. Journal of Avian Biology, 2010, 41, 672-677.	1.2	88
24	Integrating Meteorology into Research on Migration. Integrative and Comparative Biology, 2010, 50, 280-292.	2.0	87
25	Arctic Geese Tune Migration to a Warming Climate but Still Suffer from a Phenological Mismatch. Current Biology, 2018, 28, 2467-2473.e4.	3.9	84
26	A computerâ€controlled 36â€channel time domain reflectometry system for monitoring soil water contents. Water Resources Research, 1990, 26, 2311-2316.	4.2	81
27	A method for identifying optimum strategies of measuring soil water contents for calibrating a root water uptake model. Journal of Hydrology, 2000, 227, 273-286.	5.4	81
28	Validity of Firstâ€Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models. Soil Science Society of America Journal, 2002, 66, 1740-1751.	2.2	78
29	Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization. Water Resources Research, 2004, 40, .	4.2	77
30	Quantifying flow-assistance and implications for movement research. Journal of Theoretical Biology, 2012, 308, 56-67.	1.7	77
31	Overseas seed dispersal by migratory birds. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152406.	2.6	77
32	An operational model predicting autumn bird migration intensities for flight safety. Journal of Applied Ecology, 2007, 44, 864-874.	4.0	75
33	Sexually distinct foraging strategies in an omnivorous seabird. Marine Biology, 2015, 162, 1417-1428.	1.5	75
34	Flap or soar? How a flight generalist responds to its aerial environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150395.	4.0	73
35	Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology, 1997, 201, 367-383.	5.4	70
36	Modelling soil water dynamics in a forested ecosystem. III: Model description and evaluation of discretization. Hydrological Processes, 1992, 6, 455-465.	2.6	69

#	Article	IF	CITATIONS
37	Comparison of Six Methods To Determine Unsaturated Soil Hydraulic Conductivity. Soil Science Society of America Journal, 1994, 58, 1596-1603.	2.2	68
38	Comparing inferences of solar geolocation data against highâ€precision GPS data: annual movements of a doubleâ€ŧagged blackâ€ŧailed godwit. Journal of Avian Biology, 2016, 47, 589-596.	1.2	68
39	Forest floor evaporation in a dense Douglas fir stand. Journal of Hydrology, 1997, 193, 97-113.	5.4	67
40	Riding the tide: intriguing observations of gulls resting at sea during breeding. Ibis, 2011, 153, 411-415.	1.9	67
41	Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150397.	4.0	63
42	Application of parallel computing to stochastic parameter estimation in environmental models. Computers and Geosciences, 2006, 32, 1139-1155.	4.2	62
43	Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway. Journal of Animal Ecology, 2017, 86, 179-191.	2.8	61
44	A comparison of field methods for measuring soil carbon dioxide evolution: Experiments and simulation. Plant and Soil, 1991, 135, 133-142.	3.7	58
45	A Comparative Analysis of the Influence of Weather on the Flight Altitudes of Birds. Bulletin of the American Meteorological Society, 2006, 87, 47-62.	3.3	56
46	Monitoring and modelling canopy water storage amounts in support of atmospheric deposition studies. Journal of Hydrology, 1996, 181, 305-321.	5.4	55
47	Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution. Hydrology and Earth System Sciences, 2001, 5, 629-644.	4.9	55
48	Analyzing the effect of wind on flight: pitfalls and solutions. Journal of Experimental Biology, 2007, 210, 82-90.	1.7	55
49	Microwave transmission, a new tool in forest hydrological research. Journal of Hydrology, 1991, 124, 119-130.	5.4	54
50	Shifting individual habitat specialization of a successful predator living in anthropogenic landscapes. Marine Ecology - Progress Series, 2017, 578, 243-251.	1.9	54
51	High-altitude shorebird migration in the absence of topographical barriers: avoiding high air temperatures and searching for profitable winds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180569.	2.6	53
52	Soil water dynamics and long-term water balances of a Douglas fir stand in the Netherlands. Journal of Hydrology, 1994, 156, 265-283.	5.4	52
53	Identifying ecologically important marine areas for seabirds using behavioural information in combination with distribution patterns. Biological Conservation, 2012, 156, 22-29.	4.1	52
54	The influence of weather on the flight altitude of nocturnal migrants in midâ€latitudes. Ibis, 2013, 155, 734-749.	1.9	52

#	Article	IF	CITATIONS
55	Water and carbon fluxes above European coniferous forests modelled with artificial neural networks. Ecological Modelling, 1999, 120, 181-197.	2.5	51
56	Evaluation of transpiration models with observations over a Douglas-fir forest. Agricultural and Forest Meteorology, 2001, 108, 247-264.	4.8	51
57	Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines. Behavioral Ecology, 2012, 23, 1089-1101.	2.2	50
58	Seabird–wind farm interactions during the breeding season vary within and between years: A case study of lesser black-backed gull Larus fuscus in the UK. Biological Conservation, 2015, 186, 347-358.	4.1	49
59	bioRad: biological analysis and visualization of weather radar data. Ecography, 2019, 42, 852-860.	4.5	47
60	Anoxic microsites in Douglas fir litter. Soil Biology and Biochemistry, 1999, 31, 1295-1301.	8.8	46
61	Obtaining the Spatial Distribution of Water Content along a TDR Probe Using the SCEMâ€UA Bayesian Inverse Modeling Scheme. Vadose Zone Journal, 2004, 3, 1128-1145.	2.2	45
62	How individual Montagu's Harriers cope with Moreau's Paradox during the Sahelian winter. Journal of Animal Ecology, 2016, 85, 1491-1501.	2.8	44
63	Using High-Resolution GPS Tracking Data of Bird Flight for Meteorological Observations. Bulletin of the American Meteorological Society, 2016, 97, 951-961.	3.3	44
64	Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues?. Animal Behaviour, 2013, 85, 545-552.	1.9	43
65	Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping. PLoS ONE, 2016, 11, e0159974.	2.5	43
66	Nitrous oxide dynamics in an oak-beech forest ecosystem in the Netherlands. Forest Ecology and Management, 1991, 44, 53-61.	3.2	42
67	Identification of rainfall interception model parameters from measurements of throughfall and forest canopy storage. Water Resources Research, 2003, 39, .	4.2	42
68	Optimal orientation in flows: providing a benchmark for animal movement strategies. Journal of the Royal Society Interface, 2014, 11, 20140588.	3.4	42
69	Assessing rooting depths of an austrian pine stand by inverse modeling soil water content maps. Water Resources Research, 1999, 35, 3041-3048.	4.2	40
70	Comparison of travel time analysis and inverse modeling for soil water content determination with time domain reflectometry. Water Resources Research, 2002, 38, 13-1-13-8.	4.2	39
71	Monitoring Temporal Development of Spatial Soil Water Content Variation: Comparison of Ground Penetrating Radar and Time Domain Reflectometry. Vadose Zone Journal, 2003, 2, 519-529.	2.2	39
72	Short distance migrants travel as far as long distance migrants in lesser blackâ€backed gulls <i>Larus fuscus</i> . Journal of Avian Biology, 2017, 48, 49-57.	1.2	38

#	Article	IF	CITATIONS
73	Towards reduced uncertainty in catchment nitrogen modelling: quantifying the effect of field observation uncertainty on model calibration. Hydrology and Earth System Sciences, 2004, 8, 751-763.	4.9	37
74	Optimizing acceleration-based ethograms: the use of variable-time versus fixed-time segmentation. Movement Ecology, 2014, 2, 6.	2.8	37
75	Tortuosity of an Unsaturated Sandy Soil Estimated using Gas Diffusion and Bulk Soil Electrical Conductivity. Soil Science Society of America Journal, 2001, 65, 1577-1584.	2.2	37
76	Information content of time domain reflectometry waveforms. Water Resources Research, 2001, 37, 1291-1299.	4.2	36
77	Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model. Vadose Zone Journal, 2003, 2, 98-113.	2.2	36
78	Accuracy of frequency domain analysis scenarios for the determination of complex dielectric permittivity. Water Resources Research, 2004, 40, .	4.2	36
79	Obtaining the Spatial Distribution of Water Content along a TDR Probe Using the SCEM-UA Bayesian Inverse Modeling Scheme. Vadose Zone Journal, 2004, 3, 1128-1145.	2.2	36
80	The proton cycle of a deciduous forest ecosystem in the Netherlands and its implications for soil acidification. Plant and Soil, 1990, 127, 61-69.	3.7	35
81	Geomorphological Change Detection Using Object-Based Feature Extraction From Multi-Temporal LiDAR Data. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1587-1591.	3.1	35
82	Soaring across continents: decisionâ€making of a soaring migrant under changing atmospheric conditions along an entire flyway. Journal of Avian Biology, 2017, 48, 887-896.	1.2	35
83	Pareto front analysis of flight time and energy use in longâ€distance bird migration. Journal of Avian Biology, 2007, 38, 432-442.	1.2	34
84	Assessing mineralization rates of petroleum hydrocarbons in soils in relation to environmental factors and experimental scale. Biodegradation, 1996, 7, 487-500.	3.0	33
85	Extracting bird migration information from Câ€band Doppler weather radars. Ibis, 2008, 150, 674-686.	1.9	33
86	Birds flee en mass from New Year's Eve fireworks. Behavioral Ecology, 2011, 22, 1173-1177.	2.2	33
87	Probing the limits of predictability: data assimilation of chaotic dynamics in complex food webs. Ecology Letters, 2018, 21, 93-103.	6.4	33
88	Understanding soaring bird migration through interactions and decisions at the individual level. Journal of Theoretical Biology, 2011, 270, 112-126.	1.7	31
89	Current and future suitability of wintering grounds for a long-distance migratory raptor. Scientific Reports, 2017, 7, 8798.	3.3	30
90	Food predictability and social status drive individual resource specializations in a territorial vulture. Scientific Reports, 2018, 8, 15155.	3.3	30

#	Article	IF	CITATIONS
91	Where eagles soar: Fineâ€resolution tracking reveals the spatiotemporal use of differential soaring modes in a large raptor. Ecology and Evolution, 2018, 8, 6788-6799.	1.9	30
92	GPS tracking data of Lesser Black-backed Gulls and Herring Gulls breeding at the southern North Sea coast. ZooKeys, 2016, 555, 115-124.	1.1	29
93	Simulation of carbon and water budgets of a Douglas-fir forest. Forest Ecology and Management, 2001, 145, 229-241.	3.2	28
94	Collision risk of Montagu's Harriers <i>Circus pygargus</i> with wind turbines derived from highâ€resolution <scp>GPS</scp> tracking. Ibis, 2020, 162, 520-534.	1.9	28
95	Avian Information Systems: Developing Web-Based Bird Avoidance Models. Ecology and Society, 2008, 13, .	2.3	27
96	Analysing forest transpiration model errors with artificial neural networks. Journal of Hydrology, 2001, 246, 197-208.	5.4	26
97	Pathogen transmission risk by opportunistic gulls moving across human landscapes. Scientific Reports, 2019, 9, 10659.	3.3	26
98	Modelling forest transpiration from different perspectives. Hydrological Processes, 2000, 14, 251-260.	2.6	25
99	Quality Assessment of Weather Radar Wind Profiles during Bird Migration. Journal of Atmospheric and Oceanic Technology, 2008, 25, 2188-2198.	1.3	25
100	Modelling soil water dynamics in a forested ecosystem. I: A site specific evaluation. Hydrological Processes, 1992, 6, 435-444.	2.6	23
101	Potentials and limitations of modelling vertical distributions of root water uptake of an Austrian pine forest on a sandy soil. Hydrological Processes, 2000, 14, 103-115.	2.6	23
102	Simulating Daily and Half-Hourly Fluxes of Forest Carbon Dioxide and Water Vapor Exchange with a Simple Model of Light and Water Use. Ecosystems, 2002, 5, 597-610.	3.4	23
103	Evaluating a Model of Evaporation and Transpiration with Observations in a Partially Wet Douglas-Fir Forest. Boundary-Layer Meteorology, 2003, 108, 365-396.	2.3	23
104	Directed flight and optimal airspeeds: homewardâ€bound gulls react flexibly to wind yet fly slower than predicted. Journal of Avian Biology, 2016, 47, 476-490.	1.2	23
105	Migrating Montagu's harriers frequently interrupt daily flights in both Europe and Africa. Journal of Avian Biology, 2017, 48, 180-190.	1.2	23
106	Avian vulnerability to wind farm collision through the year: Insights from lesser blackâ€backed gulls (<i>Larus fuscus</i>) tracked from multiple breeding colonies. Journal of Applied Ecology, 2019, 56, 2410-2422.	4.0	23
107	Individual differences in foraging site fidelity are not related to timeâ€activity budgets in Herring Gulls. Ibis, 2020, 162, 429-445.	1.9	23
108	Longâ€distance migrants vary migratory behaviour as much as shortâ€distance migrants: An individualâ€level comparison from a seabird species with diverse migration strategies. Journal of Animal Ecology, 2021, 90, 1058-1070.	2.8	23

#	Article	IF	CITATIONS
109	Spatial variability in nutrient deposition under an oak/beech canopy. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1986, 149, 718-727.	0.4	22
110	Dodging the blades: new insights into three-dimensional space use of offshore wind farms by lesser black-backed gulls Larus fuscus. Marine Ecology - Progress Series, 2018, 587, 247-253.	1.9	22
111	Water balance of the Solling spruce stand as simulated with various forest-soil-atmosphere models. Ecological Modelling, 1995, 83, 245-253.	2.5	21
112	Comparison of different modelling strategies for simulating gas exchange of a Douglas-fir forest. Ecological Modelling, 2002, 158, 63-81.	2.5	21
113	Effect of wind, thermal convection, and variation in flight strategies on the daily rhythm and flight paths of migrating raptors at Georgia's Black Sea coast. Journal of Field Ornithology, 2014, 85, 40-55.	0.5	21
114	Can wheatears weather the Atlantic? Modeling nonstop trans-Atlantic flights of a small migratory songbird. Auk, 2014, 131, 363-370.	1.4	21
115	Testing a novel agriâ€environment scheme based on the ecology of the target species, Montagu's Harrier <i>Circus pygargus</i> . Ibis, 2015, 157, 713-721.	1.9	21
116	Soil water dynamics of the Solling spruce stand, calculated with the forhyd simulation package. Ecological Modelling, 1995, 83, 67-75.	2.5	20
117	Simultaneous measurement of water retention and electrical conductivity in soils: Testing the Mualem-Friedman Tortuosity Model. Water Resources Research, 1999, 35, 1781-1787.	4.2	20
118	Accuracy and Reproducibility of Mapping Surface Soil Water Content with the Ground Wave of Ground-Penetrating Radar. Journal of Environmental and Engineering Geophysics, 2003, 8, 67-75.	0.5	20
119	Great skua (Stercorarius skua) movements at sea in relation to marine renewable energy developments. Marine Environmental Research, 2014, 101, 69-80.	2.5	20
120	Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds. Remote Sensing, 2019, 11, 292.	4.0	20
121	Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa. Journal of Applied Ecology, 2022, 59, 1496-1512.	4.0	20
122	Evaluation of the Hot Air Method for Measuring Soil Water Diffusivity. Soil Science Society of America Journal, 1985, 49, 1093-1099.	2.2	19
123	Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science, 2015, 12, 268-288.	2.0	19
124	A circannual perspective on daily and total flight distances in a long-distance migratory raptor, the Montagu's harrier, <i>Circus pygargus</i> . Biology Letters, 2017, 13, 20170073.	2.3	19
125	Probing into farmers' perceptions of a globally endangered ecosystem service provider. Ambio, 2019, 48, 900-912.	5.5	17
126	eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales. Research Ideas and Outcomes, 0, 3, e14939.	1.0	17

#	Article	IF	CITATIONS
127	Microwave transmission, a new tool in forest hydrological research — Reply. Journal of Hydrology, 1991, 125, 313-317.	5.4	16
128	Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds. Journal of Theoretical Biology, 2013, 316, 90-98.	1.7	16
129	LiDAR and Orthophoto Synergy to optimize Object-Based Landscape Change: Analysis of an Active Landslide. Remote Sensing, 2017, 9, 805.	4.0	16
130	Shorebird feeding specialists differ in how environmental conditions alter their foraging time. Behavioral Ecology, 2020, 31, 371-382.	2.2	16
131	Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model. Vadose Zone Journal, 2003, 2, 98-113.	2.2	16
132	High-Resolution Spatial Distribution of Bird Movements Estimated from a Weather Radar Network. Remote Sensing, 2020, 12, 635.	4.0	15
133	Sample size required to characterize area use of tracked seabirds. Journal of Wildlife Management, 2017, 81, 1098-1109.	1.8	14
134	Orographic lift shapes flight routes of gulls in virtually flat landscapes. Scientific Reports, 2019, 9, 9659.	3.3	14
135	Winds at departure shape seasonal patterns of nocturnal bird migration over the North Sea. Journal of Avian Biology, 2020, 51, .	1.2	14
136	Modelling soil water dynamics in a forest ecosystem. II: Evaluation of spatial variation of soil profiles. Hydrological Processes, 1992, 6, 445-454.	2.6	13
137	Modeling the Gas Diffusion Coefficient in Analogy to Electrical Conductivity Using a Capillary Model. Soil Science Society of America Journal, 2000, 64, 527-532.	2.2	13
138	Pareto front analysis of flight time and energy use in long-distance bird migration. Journal of Avian Biology, 2007, 38, 432-442.	1.2	13
139	Modelling channel incision and alpine hillslope development using laser altimetry data. Geomorphology, 2009, 113, 35-46.	2.6	13
140	Rule Set Transferability for Object-Based Feature Extraction: An Example for Cirque Mapping. Photogrammetric Engineering and Remote Sensing, 2015, 81, 507-514.	0.6	13
141	A predictive model for improving placement of wind turbines to minimise collision risk potential for a large soaring raptor. Journal of Applied Ecology, 2021, 58, 857-868.	4.0	13
142	Body stores persist as fitness correlate in a long-distance migrant released from food constraints. Behavioral Ecology, 2018, 29, 1157-1166.	2.2	12
143	Seasonal grouping dynamics in a territorial vulture: ecological drivers and social consequences. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	12
144	Humans shape the yearâ€round distribution and habitat use of an opportunistic scavenger. Ecology and Evolution, 2020, 10, 4716-4725.	1.9	12

#	Article	IF	CITATIONS
145	Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway. Movement Ecology, 2021, 9, 37.	2.8	12
146	Comparison of calibration and direct measurement of cable and probe properties in time domain reflectometry. Soil Science Society of America Journal, 1999, 63, 1615-1617.	2.2	11
147	Transpiration dynamics of an Austrian Pine stand and its forest floor: identifying controlling conditions using artificial neural networks. Advances in Water Resources, 2002, 25, 293-303.	3.8	11
148	The effect of change in soil volume on organic matter distribution in a volcanic ash soil. European Journal of Soil Science, 2016, 67, 226-236.	3.9	11
149	Behavioral rhythms of an opportunistic predator living in anthropogenic landscapes. Movement Ecology, 2020, 8, 17.	2.8	11
150	The application of TDR in laboratory column experiments. Soil and Tillage Research, 1993, 6, 261-272.	0.4	10
151	On the information content of forest transpiration measurements for identifying canopy conductance model parameters. Hydrological Processes, 2001, 15, 2821-2832.	2.6	10
152	Monitoring Temporal Development of Spatial Soil Water Content Variation: Comparison of Ground Penetrating Radar and Time Domain Reflectometry. Vadose Zone Journal, 2003, 2, 519-529.	2.2	10
153	Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates. Hydrology and Earth System Sciences, 2013, 17, 3455-3472.	4.9	10
154	Identification of Griffon Vulture's Flight Types Using High-Resolution Tracking Data. International Journal of Environmental Research, 2018, 12, 313-325.	2.3	10
155	Nocturnal foraging lifts time constraints in winter for migratory geese but hardly speeds up fueling. Behavioral Ecology, 2021, 32, 539-552.	2.2	10
156	Ranging Behaviour of Verreaux's Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking. PLoS ONE, 2016, 11, e0163378.	2.5	10
157	Western Marsh Harriers Circus aeruginosus from nearby breeding areas migrate along comparable loops, but on contrasting schedules in the West African–Eurasian flyway. Journal of Ornithology, 2020, 161, 953-965.	1.1	9
158	When speed matters: The importance of flight speed in an avian collision risk model. Environmental Impact Assessment Review, 2021, 90, 106622.	9.2	9
159	Toward Improved Identifiability of Soil Hydraulic Parameters. Vadose Zone Journal, 2003, 2, 98.	2.2	9
160	Relationships between precipitation chemistry and some meteorological parameters in the Netherlands: a statistical evaluation. Water, Air, and Soil Pollution, 1986, 28, 213-223.	2.4	9
161	Investigating avoidance and attraction responses in lesser black-backed gulls Larus fuscus to offshore wind farms. Marine Ecology - Progress Series, 2022, 686, 187-200.	1.9	8
162	Cascading effects of climate variability on the breeding success of an edge population of an apex predator. Journal of Animal Ecology, 2020, 89, 2631-2643.	2.8	7

#	Article	IF	CITATIONS
163	Analyzing latent heat fluxes of coniferous forests with fuzzy logic. Water Resources Research, 2000, 36, 1865-1872.	4.2	6
164	The production of N2O in Douglas fir litter as affected by anoxic conditions within litter particles and pores. Soil Biology and Biochemistry, 2007, 39, 239-248.	8.8	6
165	A semantically integrated, user-friendly data model for species observation data. Ecological Informatics, 2012, 8, 1-9.	5.2	6
166	Balancing food and densityâ€dependence in the spatial distribution of an interferenceâ€prone forager. Oikos, 2017, 126, 1184-1196.	2.7	6
167	Strong biotic influences on regional patterns of climate regulation services. Global Biogeochemical Cycles, 2017, 31, 787-803.	4.9	6
168	Dynamic space use of Andalusian rice fields by Lesser Blackâ€backed Gulls (<i>Larus fuscus</i>) is driven by flooding pattern. Ibis, 2021, 163, 1252-1270.	1.9	6
169	Novel Insights into the Map Stage of True Navigation in Nonmigratory Wild Birds (Stone Curlews,) Tj ETQq1	1 0.784314 rg 2.1	;BT ₅ /Overlock
170	Monitoring Temporal Development of Spatial Soil Water Content Variation. Vadose Zone Journal, 2003, 2, 519.	2.2	5
171	Acceleration as a proxy for energy expenditure in a facultativeâ€soaring bird: Comparing dynamic body acceleration and timeâ€energy budgets to heart rate. Functional Ecology, 2022, 36, 1627-1638.	3.6	5
172	Associations of Synoptic Weather Conditions With Nocturnal Bird Migration Over the North Sea. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	4
173	Why timeâ€limited individuals can make populations more vulnerable to disturbance. Oikos, 2021, 130, 637-651.	2.7	4
174	Plant Control on Evapotranspiration: Models and Measurements. , 1995, , 105-133.		3
175	Advancing Spatio-temporal Analysis of Ecological Data: Examples in R. Lecture Notes in Computer Science, 2008, , 692-707.	1.3	2
176	Application of tri-axial accelerometer data to the interpretation of movement and behaviour of threatened black cockatoos. Wildlife Research, 2022, 49, 100-110.	1.4	2
177	The Role of Organic Soil Profiles on Water Availability in Forests: Sensitivity Analyses. Studies in Environmental Science, 1995, 65, 729-734.	0.0	1
178	GPS tracking data of Western marsh harriers breeding in Belgium and the Netherlands. ZooKeys, 2020, 947, 143-155.	1.1	1
179	Ensemble predictions are essential for accurate bird migration forecasts for conservation and flight safety. Ecological Solutions and Evidence, 2022, 3, .	2.0	1
180	Foraging movements of common noddies in the East Indian Ocean are dependent on breeding stage: implications for marine reserve design. Pacific Conservation Biology, 2019, 25, 164.	1.0	0