Paul Asimow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/490903/publications.pdf

Version: 2024-02-01

183 papers 8,943 citations

50276 46 h-index 90 g-index

189 all docs

189 docs citations

189 times ranked 6422 citing authors

#	Article	IF	CITATIONS
1	An internal energy-dependent model for the $Gr\tilde{A}^{1}/4$ neisen parameter of silicate liquids. Geochimica Et Cosmochimica Acta, 2022, 316, 59-68.	3.9	1
2	Magmatic and post-magmatic evolution of post-collisional rare-metal bearing granite: The Neoproterozoic Homrit Akarem Granitic Intrusion, south Eastern Desert of Egypt, Arabian-Nubian Shield. Chemie Der Erde, 2022, 82, 125840.	2.0	14
3	Multistage petrogenetic evolution of Neoproterozoic serpentinized ultramafic rocks and podiform chromitites at Hagar Dungash, Eastern Desert of Egypt. Precambrian Research, 2022, 369, 106507.	2.7	2
4	Experimental constraints on truly conjugate alkaline silicate – carbonatite melt pairs. Earth and Planetary Science Letters, 2022, 584, 117500.	4.4	8
5	Formation of gold-bearing listvenite in the mantle section of the Neoproterozoic Bir Umq ophiolite, Western Arabian Shield, Saudi Arabia. Journal of African Earth Sciences, 2022, 190, 104517.	2.0	7
6	Unique evidence of fluid alteration in the Kakowa (L6) ordinary chondrite. Scientific Reports, 2022, 12, 5520.	3.3	1
7	Thank You to Our 2021 Reviewers. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	O
8	A multi-phase field model for mesoscopic interface dynamics with large bulk driving forces. Computational Materials Science, 2022, 212, 111570.	3.0	2
9	Two episodes of Eocene mafic magmatism in the southern Lhasa terrane imply an eastward propagation of slab breakoff. Gondwana Research, 2022, 110, 31-43.	6.0	4
10	Thermodynamic Modeling of Silicate Systems. , 2021, , 44-51.		O
11	Femtosecond Xâ€Ray Diffraction of Laserâ€Shocked Forsterite (Mg ₂ SiO ₄) to 122ÂGPa. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	7
12	Geochemistry and Petrogenesis of Late Ediacaran Rareâ€metal Albite Granites of the Arabianâ€Nubian Shield. Acta Geologica Sinica, 2021, 95, 459-480.	1.4	10
13	Volcanism During the Post-accretionary Stage of the Arabian–Nubian Shield. Regional Geology Reviews, 2021, , 485-533.	1.2	2
14	Neoproterozoic Ophiolites of the Arabian-Nubian Shield. Regional Geology Reviews, 2021, , 297-330.	1.2	2
15	Trace Element Conundrum of Natural Quasicrystals. ACS Earth and Space Chemistry, 2021, 5, 676-689.	2.7	6
16	Petrogenesis of the post-collisional rare-metal-bearing Ad-Dayheen granite intrusion, Central Arabian Shield. Lithos, 2021, 384-385, 105956.	1.4	4
17	Microtextures in the Chelyabinsk impact breccia reveal the history of Phosphorusâ€Olivineâ€Assemblages in chondrites. Meteoritics and Planetary Science, 2021, 56, 742-766.	1.6	5
18	Post-collisional volcanism with adakitic signatures in the Arabian-Nubian Shield: A case study of calc-alkaline Dokhan volcanics in the Eastern Desert of Egypt. Lithos, 2021, 388-389, 106051.	1.4	8

#	Article	IF	CITATIONS
19	Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
20	Evolution of a Neoproterozoic island arc in the northern Arabian-Nubian Shield: Volcanic rocks and their plutonic equivalents in the Hamash area, south Eastern Desert, Egypt. Precambrian Research, 2021, 358, 106145.	2.7	4
21	Late Cretaceous adakitic and A-type granitoids in Chanang, southern Tibet: Implications for Neo-Tethyan slab rollback. Gondwana Research, 2021, 96, 89-104.	6.0	11
22	Geochemistry and mineralogy of the Jebel Aja Igneous Intrusion and the associated exotic pegmatites, Arabian Shield, Saudi Arabia. Lithos, 2021, 400-401, 106395.	1.4	2
23	Petrogenetic Evolution of the Neoproterozoic Igneous Rocks of Egypt. Regional Geology Reviews, 2021, , 343-382.	1.2	7
24	The Mantle Section of Neoproterozoic Ophiolites from the Pan-African Belt, Eastern Desert, Egypt: Tectonomagmatic Evolution, Metamorphism, and Mineralization. Regional Geology Reviews, 2021, , 309-341.	1.2	2
25	The kabr El-Bonaya peridotites, Southeastern Sinai, Egypt: petrology, geochemistry, and metamorphism of Neoproterozoic arc ultramafic cumulates. Numerische Mathematik, 2021, 321, 1445-1496.	1.4	1
26	Shock experiments on basaltâ€"Ferric sulfate mixes and their possible relevance to the sulfide bleb clusters in large impact melts in shergottites. Meteoritics and Planetary Science, 2021, 56, 2250-2264.	1.6	1
27	Tracking the transition from subductionâ€related to postâ€collisional magmatism in the north Arabian–Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt. Geological Journal, 2020, 55, 4426-4452.	1.3	27
28	Petrological characteristics of the Neoproterozoic Ess ophiolite mantle section, Arabian Shield, Saudi Arabia: a mineral chemistry perspective. International Journal of Earth Sciences, 2020, 109, 239-251.	1.8	13
29	Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia. Lithos, 2020, 372-373, 105679.	1.4	9
30	The effects of solid-solid phase equilibria on the oxygen fugacity of the upper mantle. American Mineralogist, 2020, 105, 1445-1471.	1.9	16
31	Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos, 2020, 374-375, 105720.	1.4	7
32	Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Pressure Research, 2020, 40, 299-314.	1.2	143
33	Configurational entropy of basaltic melts in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21938-21944.	7.1	21
34	The Atud gabbro–diorite complex: glimpse of the Cryogenian mixing, assimilation, storage and homogenization zone beneath the Eastern Desert of Egypt. Journal of the Geological Society, 2020, 177, 965-980.	2.1	14
35	Genesis and geodynamic evolution of serpentinized ultramafics and associated magnesite deposits in the Al-Wask ophiolite, Arabian Shield, Saudi Arabia. Numerische Mathematik, 2020, 320, 236-279.	1.4	14
36	Suprasubduction-zone origin of the podiform chromitites of the Bir Tuluhah ophiolite, Saudi Arabia, during Neoproterozoic assembly of the Arabian Shield. Lithos, 2020, 360-361, 105439.	1.4	11

#	Article	IF	Citations
37	Water-in-olivine magma ascent chronometry: Every crystal is a clock. Journal of Volcanology and Geothermal Research, 2020, 398, 106872.	2.1	39
38	Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geology Reviews, 2020, 122, 103530.	2.7	83
39	First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment. IUCrJ, 2020, 7, 434-444.	2.2	13
40	Tectonochemistry of the Brooks Range Ophiolite, Alaska. Lithosphere, 2020, 2020, .	1.4	1
41	Shock synthesis of Al-Fe-Cr-Cu-Ni icosahedral quasicrystal. AIP Conference Proceedings, 2020, , .	0.4	O
42	Mid-Neoproterozoic mafic rocks in the western Jiangnan orogen, South China: Intracontinental rifting or subduction?. Journal of Asian Earth Sciences, 2019, 185, 104039.	2.3	12
43	Hydrothermal scavenging of 230Th on the Southern East Pacific Rise during the last deglaciation. Earth and Planetary Science Letters, 2019, 510, 64-72.	4.4	13
44	The potential of phosphorus in clinopyroxene as a geospeedometer: Examples from mantle xenoliths. Geochimica Et Cosmochimica Acta, 2019, 266, 307-331.	3.9	11
45	Geochemistry of middle-late Mesozoic mafic intrusions in the eastern North China Craton: New insights on lithospheric thinning and decratonization. Gondwana Research, 2019, 73, 153-174.	6.0	21
46	Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6–2.6 GPa and 860–970 °C. American Mineralogist, 2019, 104, 525-535.	1.9	8
47	Tantalum sound velocity under shock compression. Journal of Applied Physics, 2019, 125, .	2.5	16
48	Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments. Journal of Applied Physics, 2019, 125, .	2.5	11
49	Santorini volcano as a potential Martian analogue: The Balos Cove Basalts. Icarus, 2019, 325, 128-140.	2.5	3
50	High-pressure melt curve of shock-compressed tin measured using pyrometry and reflectance techniques. Journal of Applied Physics, 2019, 126, .	2.5	21
51	The common origin and alteration history of the hypabyssal and volcanic phases of the Wadi Tarr albitite complex, southern Sinai, Egypt. Lithos, 2019, 324-325, 821-841.	1.4	8
52	Multiple Stages of Carbonation and Element Redistribution during Formation of Ultramafic-Hosted Magnesite in Neoproterozoic Ophiolites of the Arabian-Nubian Shield, Egypt. Journal of Geology, 2019, 127, 81-107.	1.4	27
53	Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 2018, 158, 301-323.	2.3	17
54	Prehnite as an indicator mineral in the Wadi Nasb uralitized gabbro, South Sinai, Egypt. Journal of Asian Earth Sciences, 2018, 160, 107-117.	2.3	3

#	Article	IF	CITATIONS
55	Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1850 K. Physical Review B, 2018, 97, .	3.2	14
56	The last subduction-related volcanism in the northern tip of the Arabian-Nubian Shield: A Neoproterozoic arc preceding the terminal collision of East and West Gondwana. Precambrian Research, 2018, 310, 256-277.	2.7	18
57	First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U. Physics and Chemistry of Minerals, 2018, 45, 293-302.	0.8	11
58	Geochemistry and petrogenesis of post-collisional alkaline and peralkaline granites of the Arabian-Nubian Shield: a case study from the southern tip of Sinai Peninsula, Egypt. International Geology Review, 2018, 60, 998-1018.	2.1	26
59	Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids. International Journal of Earth Sciences, 2018, 107, 1657-1688.	1.8	10
60	Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province. Lithos, 2018, 296-299, 396-411.	1.4	21
61	An example of post-collisional appinitic magmatism with an arc-like signature: the Wadi Nasb mafic intrusion, north Arabian–Nubian Shield, south Sinai, Egypt. International Geology Review, 2018, 60, 865-888.	2.1	13
62	Anomalous Pacificâ€Antarctic Ridge Volcanism Precedes Glacial Termination 2. Geochemistry, Geophysics, Geosystems, 2018, 19, 2478-2491.	2.5	7
63	Late Cretaceous Construction of the Mantle Lithosphere Beneath the Central California Coast Revealed by Crystal Knob Xenoliths. Geochemistry, Geophysics, Geosystems, 2018, 19, 3302-3346.	2.5	3
64	On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites. American Mineralogist, 2018, 103, 1087-1102.	1.9	27
65	High pressure minerals in the ChÃ $^{\c}$ teau-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Scientific Reports, 2018, 8, 9851.	3.3	39
66	Geophysical source conditions for basaltic lava from Santorini volcano based on geochemical modeling. Lithos, 2018, 316-317, 295-303.	1.4	6
67	In Situ Observations of Phase Changes in Shock Compressed Forsterite. Geophysical Research Letters, 2018, 45, 8129-8135.	4.0	8
68	Room-Temperature Pressure Synthesis of Layered Black Phosphorus–Graphene Composite for Sodium-Ion Battery Anodes. ACS Nano, 2018, 12, 8323-8329.	14.6	83
69	Secondary fluorescence effects in microbeam analysis and their impacts on geospeedometry and geothermometry. Chemical Geology, 2018, 490, 22-29.	3.3	25
70	Melts Under Extreme Conditions From Shock Experiments. , 2018, , 387-418.		5
71	Formation and Evolution of a Magmatic System in a Rifting Continental Margin: Neoproterozoic Arcand MORB-like Dike Swarms in South China. Journal of Petrology, 2018, 59, 1811-1844.	2.8	50
72	Seconds after impact: Insights into the thermal history of impact ejecta from diffusion between lechatelierite and host glass in tektites and experiments. Geochimica Et Cosmochimica Acta, 2018, 241, 69-94.	3.9	20

#	Article	IF	CITATIONS
73	Partial Melting. Encyclopedia of Earth Sciences Series, 2018, , 1180-1185.	0.1	О
74	Ab initio study of the structure and stability of CaMg(CO ₃) ₂ at high pressure. American Mineralogist, 2017, 102, 210-215.	1.9	13
75	A measure of mantle melting. Science, 2017, 355, 908-909.	12.6	4
76	An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China. Precambrian Research, 2017, 296, 93-111.	2.7	63
77	Equation of state of Mo from shock compression experiments on preheated samples. Journal of Applied Physics, 2017, 121, .	2.5	5
78	Highly CO2-supersaturated melts in the Pannonian lithospheric mantle – A transient carbon reservoir?. Lithos, 2017, 286-287, 519-533.	1.4	26
79	The late Neoproterozoic Dahanib mafic-ultramafic intrusion, South eastern Desert, Egypt: Is it an Alaskan-type or a layered intrusion?. Numerische Mathematik, 2017, 317, 901-940.	1.4	30
80	Equation of state of liquid bismuth and its melting curve from ultrasonic investigation at high pressure. Physica B: Condensed Matter, 2017, 524, 154-162.	2.7	11
81	Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece. Lithos, 2017, 288-289, 231-247.	1.4	8
82	Shock Synthesis of Decagonal Quasicrystals. Scientific Reports, 2017, 7, 15628.	3.3	21
83	Phosphorus zoning as a recorder of crystal growth kinetics: application to second-generation olivine in mantle xenoliths from the Cima Volcanic Field. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	9
84	Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 2017, 45, 39-42.	4.4	184
85	Shock Synthesis of Five-component Icosahedral Quasicrystals. Scientific Reports, 2017, 7, 15629.	3.3	22
86	Mineral chemistry of the Tissint meteorite: Indications of twoâ€stage crystallization in a closed system. Meteoritics and Planetary Science, 2016, 51, 2293-2315.	1.6	16
87	Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	15
88	Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7077-7081.	7.1	112
89	Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations. Science, 2016, 351, 478-482.	12.6	64
90	Partial Melting. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	2

#	Article	IF	CITATIONS
91	Reply to "Comment on â€~Molybdenum sound velocity and shear modulus softening under shock compression' ― Physical Review B, 2015, 92, .	3.2	6
92	Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp. Review of Scientific Instruments, 2015, 86, 101502.	1.3	9
93	Current limitations of molecular dynamic simulations as probes of thermo-physical behavior of silicate melts. American Mineralogist, 2015, 100, 1866-1882.	1.9	14
94	A self-consistent optimization of multicomponent solution properties: Ab initio molecular dynamic simulations and the MgO–SiO2 miscibility gap under pressure. Geochimica Et Cosmochimica Acta, 2015, 161, 146-165.	3.9	6
95	Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures. Geochimica Et Cosmochimica Acta, 2015, 163, 40-58.	3.9	10
96	<scp>PRIMELT</scp> 3 <scp>MEGA.XLSM</scp> software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems, 2015, 16, 563-578.	2.5	279
97	MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K. Journal of Physics: Conference Series, 2014, 500, 062003.	0.4	8
98	Zonation of H2O and F Concentrations around Melt Inclusions in Olivines. Journal of Petrology, 2014, 55, 685-707.	2.8	68
99	High frequency seismic waves and slab structures beneath Italy. Earth and Planetary Science Letters, 2014, 391, 212-223.	4.4	23
100	Continental rift and oceanic protoliths of mafic–ultramafic rocks from the Kechros Complex, NE Rhodope (Greece): implications from petrography, major and trace-element systematics, and MELTS modeling. International Journal of Earth Sciences, 2014, 103, 981-1003.	1.8	6
101	Molybdenum sound velocity and shear modulus softening under shock compression. Physical Review B, 2014, 89, .	3.2	37
102	Neoproterozoic boninite-series rocks in South China: A depleted mantle source modified by sediment-derived melt. Chemical Geology, 2014, 388, 98-111.	3.3	67
103	A lesson in defining "extinct― Physics Today, 2014, 67, 8-8.	0.3	O
104	The molar volume of FeO–MgO–Fe2O3–Cr2O3–Al2O3–TiO2 spinels. Contributions To Mineralogy and Petrology, 2013, 165, 25.	3.1	6
105	Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth and Planetary Science Letters, 2013, 384, 81-87.	4.4	46
106	A double-spike method for K–Ar measurement: A technique for high precision in situ dating on Mars and other planetary surfaces. Geochimica Et Cosmochimica Acta, 2013, 110, 1-12.	3.9	30
107	Nickel and helium evidence for melt above the core–mantle boundary. Nature, 2013, 493, 393-397.	27.8	77
108	(Invited) Novel Applications of Knudsen Effusion Mass Spectrometry. ECS Transactions, 2013, 58, 3-12.	0.5	0

#	Article	IF	CITATIONS
109	Preheated shock experiments in the molten CaAl ₂ Si ₂ ê€CaFeSi ₂ O _{ê€CaMgSi₂efcaMgSi₂efcaMgSi₂efcaMgSi_{ef}}	o3.4	16{/sub>
110	Direct shock compression experiments on premolten forsterite and progress toward a consistent highâ€pressure equation of state for CaOâ€MgOâ€Al ₂ O ₃ â€SiO ₂ â€FeO liquids. Journal of Geophysical Research: Solid Earth, 2013, 118, 5738-5752.	3.4	42
111	Shock compression of preheated silicate liquids: Apparent universality of increasing Grul neisen parameter upon compression., 2012,,.		6
112	Structure of shock compressed model basaltic glass: Insights from O Kâ€edge Xâ€ray Raman scattering and highâ€resolution ²⁷ Al NMR spectroscopy. Geophysical Research Letters, 2012, 39, .	4.0	12
113	Multiâ€technique equation of state for Fe ₂ SiO ₄ melt and the density of Feâ€bearing silicate melts from 0 to 161 GPa. Journal of Geophysical Research, 2012, 117, .	3.3	76
114	Does sea level influence mid-ocean ridge magmatism on Milankovitch timescales?. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	51
115	Manganese partitioning during hydrous melting of peridotite. Geochimica Et Cosmochimica Acta, 2011, 75, 5819-5833.	3.9	29
116	Hydrous, Low-carbon Melting of Garnet Peridotite. Journal of Petrology, 2011, 52, 2079-2105.	2.8	40
117	Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. American Mineralogist, 2011, 96, 1725-1741.	1.9	98
118	Thermodynamic properties of alloys of gold-74/palladium-26 with variable amounts of iron and the use of Au-Pd-Fe alloys as containers for experimental petrology. American Mineralogist, 2011, 96, 1467-1474.	1.9	20
119	Oxygen isotope constraints on the structure and evolution of the Hawaiian Plume. Numerische Mathematik, 2010, 310, 683-720.	1.4	8
120	Shock compression of liquid silicates to 125 GPa: The anorthiteâ€diopside join. Journal of Geophysical Research, 2010, 115, .	3.3	44
121	Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13691-13695.	7.1	36
122	Simultaneous aluminum, silicon, and sodium coordination changes in 6 GPa sodium aluminosilicate glasses. American Mineralogist, 2009, 94, 1205-1215.	1.9	70
123	Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites. Science Bulletin, 2009, 54, 2580-2594.	9.0	62
124	Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth and Planetary Science Letters, 2009, 278, 243-256.	4.4	327
125	Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 2009, 288, 255-267.	4.4	260
126	Fluid source-based modeling of melt initiation within the subduction zone mantle wedge: Implications for geochemical trends in arc lavas. Chemical Geology, 2009, 266, 297-310.	3.3	14

#	Article	IF	Citations
127	Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results. Geochimica Et Cosmochimica Acta, 2009, 73, 3914-3933.	3.9	88
128	Shock compression of preheated molybdenum to 300GPa. Physics of the Earth and Planetary Interiors, 2009, 174, 302-308.	1.9	22
129	Advances in high-pressure mineral physics: From the deep mantle to the core. Physics of the Earth and Planetary Interiors, 2009, 174, 1-2.	1.9	3
130	The MgSiO $<$ sub $>$ 3 $<$ /sub $>$ system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. Journal of Geophysical Research, 2009, 114, .	3.3	120
131	Origins of chemical diversity of backâ€arc basin basalts: A segmentâ€scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research, 2009, 114, .	3.3	76
132	SHOCK TEMPERATURES OF PREHEATED MgO., 2009, , .		4
133	ADVANCES IN SHOCK COMPRESSION OF MANTLE MINERALS AND IMPLICATIONS., 2009, , .		1
134	Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	398
135	Cation order/disorder behavior and crystal chemistry of pyrope-grossular garnets: An 17O 3QMAS and 27Al MAS NMR spectroscopic study. American Mineralogist, 2008, 93, 134-143.	1.9	22
136	A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth and Planetary Science Letters, 2008, 272, 720-729.	4.4	68
137	Petrogenesis of Ultramafic Rocks from the Ultrahigh-pressure Metamorphic Kimi Complex in Eastern Rhodope (NE Greece). Journal of Petrology, 2008, 49, 885-909.	2.8	9
138	Insights into mantle melting from graphical analysis of one-component systems. Numerische Mathematik, 2007, 307, 1051-1139.	1.4	38
139	Experimental study of radium partitioning between anorthite and melt at 1 atm. American Mineralogist, 2007, 92, 1535-1538.	1.9	23
140	Grain boundary partitioning of Ar and He. Geochimica Et Cosmochimica Acta, 2007, 71, 434-451.	3.9	26
141	Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	571
142	Thermodynamic properties of Mg2SiO4liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. Journal of Geophysical Research, 2007, 112, .	3.3	92
143	Hydrogen incorporation in olivine from 2-12 GPa. American Mineralogist, 2006, 91, 285-294.	1.9	194
144	Asimow, Jahren, and Randerson receive 2005 James B. Macelwane Medal. Eos, 2006, 87, 40.	0.1	0

#	Article	IF	Citations
145	Determination of melt influence on divalent element partitioning between anorthite and CMAS melts. Geochimica Et Cosmochimica Acta, 2006, 70, 4258-4274.	3.9	22
146	Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains. American Mineralogist, 2006, 91, 278-284.	1.9	74
147	Recovery of stishovite-structure at ambient conditions out of shock-generated amorphous silica. American Mineralogist, 2006, 91, 1857-1862.	1.9	25
148	Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, 2005, 33, 53.	4.4	99
149	Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochimica Et Cosmochimica Acta, 2005, 69, 3671-3682.	3.9	143
150	Novel crystalline carbon-cage structure synthesized from laser-driven shock wave loading of graphite. Journal of Chemical Physics, 2005, 123, 024703.	3.0	11
151	Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochemistry, Geophysics, Geosystems, 2005, 6, .	2.5	405
152	Effect of Al on the sharpness of the MgSiO3perovskite to post-perovskite phase transition. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	71
153	Time-Resolved X-Ray Diffraction Investigation of Superheating-Melting of Crystals under Ultrafast Heating. AIP Conference Proceedings, 2004, , .	0.4	3
154	Shock-synthesized glassy and solid silica: intermediates between four- and six-fold coordination. High Pressure Research, 2004, 24, 471-479.	1.2	5
155	The Significance of Multiple Saturation Points in the Context of Polybaric Near-fractional Melting. Journal of Petrology, 2004, 45, 2349-2367.	2.8	66
156	Laser-induced shock waves in condensed matter: some techniques and applications. High Pressure Research, 2004, 24, 409-422.	1.2	44
157	A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	281
158	Shock-compressed MgSiO3glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting. Journal of Geophysical Research, 2004, 109, .	3.3	69
159	Shock-induced melting of MgSiO3perovskite and implications for melts in Earth's lowermost mantle. Geophysical Research Letters, 2004, 31, .	4.0	93
160	Acceptance of the 2003 F. W. Clarke Award. Geochimica Et Cosmochimica Acta, 2004, 68, 1965-1966.	3.9	0
161	Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth and Planetary Science Letters, 2004, 220, 297-316.	4.4	63
162	A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica. American Mineralogist, 2004, 89, 455-461.	1.9	25

#	Article	IF	Citations
163	The importance of water to oceanic mantle melting regimes. Nature, 2003, 421, 815-820.	27.8	333
164	A slice of history. Nature, 2003, 423, 491-492.	27.8	2
165	PetroPlot: A plotting and data management tool set for Microsoft Excel. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	16
166	Polymorphism, superheating, and amorphization of silica upon shock wave loading and release. Journal of Geophysical Research, 2003, 108, .	3.3	42
167	Synthesis and thermoelectric properties of Ce(Ru0.67Rh0.33)4Sb12 Materials Research Society Symposia Proceedings, 2003, 793, 176.	0.1	1
168	Steady-state Mantle-Melt Interactions in One Dimension: II. Thermal Interactions and Irreversible Terms. Journal of Petrology, 2002, 43, 1707-1724.	2.8	26
169	Stishovite and its implications in geophysics: new results from shock-wave experiments and theoretical modeling. Physics-Uspekhi, 2002, 45, 435-439.	2.2	14
170	Direct shock wave loading of Stishovite to 235 GPa: Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions. Geophysical Research Letters, 2002, 29, 36-1-36-4.	4.0	46
171	Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-ocean Ridge Basalts. Journal of Petrology, 2001, 42, 963-998.	2.8	159
172	Steady-state Mantle-Melt Interactions in One Dimension: I. Equilibrium Transport and Melt Focusing. Journal of Petrology, 1999, 40, 475-494.	2.8	86
173	Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. III. Controls on Isobaric Melt Production and the Effect of Water on Melt Production. Journal of Petrology, 1999, 40, 831-851.	2.8	169
174	A model that reconciles major- and trace-element data from abyssal peridotites. Earth and Planetary Science Letters, 1999, 169, 303-319.	4.4	83
175	Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. III. Controls on Isobaric Melt Production and the Effect of Water on Melt Production. Journal of Petrology, 1999, 40, 831-851.	2.8	29
176	Determination of the partial molar volume of SiO2 in silicate liquids at elevated pressures and temperatures: a new experimental approach. Geochimica Et Cosmochimica Acta, 1998, 62, 2499-2508.	3.9	27
177	Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments. Journal of Petrology, 1998, 39, 1091-1115.	2.8	156
178	Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 1998, 83, 1127-1132.	1.9	618
179	An analysis of variations in isentropic melt productivity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 255-281.	3.4	133
180	The effect of pressure-induced solid-solid phase transitions on decompression melting of the mantle. Geochimica Et Cosmochimica Acta, 1995, 59, 4489-4506.	3.9	95

Paul Asimow

#	Article	IF	CITATIONS
181	Fluid outflows from Venus impact craters: Analysis from Magellan data. Journal of Geophysical Research, 1992, 97, 13643-13665.	3.3	24
182	Tests of random density models of terrestrial planets. Geophysical Research Letters, 1991, 18, 909-912.	4.0	10
183	Hydrogen Incorporation in Natural Mantle Olivines. Geophysical Monograph Series, 0, , 45-56.	0.1	20