Jeffrey D Schall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4908528/publications.pdf Version: 2024-02-01

IFFEDEV D SCHALL

#	Article	IF	CITATIONS
1	Signal Timing Across the Macaque Visual System. Journal of Neurophysiology, 1998, 79, 3272-3278.	0.9	989
2	NEURAL SELECTION AND CONTROL OF VISUALLY GUIDED EYE MOVEMENTS. Annual Review of Neuroscience, 1999, 22, 241-259.	5.0	513
3	Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding. Science, 2003, 302, 120-122.	6.0	511
4	Role of Frontal Eye Fields in Countermanding Saccades: Visual, Movement, and Fixation Activity. Journal of Neurophysiology, 1998, 79, 817-834.	0.9	481
5	A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. ELife, 2019, 8, .	2.8	479
6	Neural basis of deciding, choosing and acting. Nature Reviews Neuroscience, 2001, 2, 33-42.	4.9	473
7	Inhibitory control in mind and brain: An interactive race model of countermanding saccades Psychological Review, 2007, 114, 376-397.	2.7	472
8	Neural basis of saccade target selection in frontal eye field during visual search. Nature, 1993, 366, 467-469.	13.7	450
9	Performance monitoring by the supplementary eye field. Nature, 2000, 408, 857-860.	13.7	372
10	Response Inhibition and Response Monitoring in a Saccadic Countermanding Task in Schizophrenia. Biological Psychiatry, 2011, 69, 55-62.	0.7	325
11	Neurally constrained modeling of perceptual decision making Psychological Review, 2010, 117, 1113-1143.	2.7	307
12	Neural Mechanisms of Speed-Accuracy Tradeoff. Neuron, 2012, 76, 616-628.	3.8	305
13	Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 1996, 381, 697-699.	13.7	294
14	Dissociation of Visual Discrimination From Saccade Programming in Macaque Frontal Eye Field. Journal of Neurophysiology, 1997, 77, 1046-1050.	0.9	277
15	Effects of similarity and history on neural mechanisms of visual selection. Nature Neuroscience, 1999, 2, 549-554.	7.1	267
16	Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field. Neuron, 2003, 38, 637-648.	3.8	257
17	Monitoring and Control of Action by the Frontal Lobes. Neuron, 2002, 36, 309-322.	3.8	255
18	On the role of frontal eye field in guiding attention and saccades. Vision Research, 2004, 44, 1453-1467.	0.7	241

#	Article	IF	CITATIONS
19	Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15541-15544.	3.3	224
20	The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1073-1082.	1.8	217
21	Priming in Macaque Frontal Cortex during Popout Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return. Journal of Neuroscience, 2002, 22, 4675-4685.	1.7	215
22	Executive control of countermanding saccades by the supplementary eye field. Nature Neuroscience, 2006, 9, 925-931.	7.1	207
23	Countermanding saccades in macaque. Visual Neuroscience, 1995, 12, 929-937.	0.5	191
24	The detection of visual signals by macaque frontal eye field during masking. Nature Neuroscience, 1999, 2, 283-288.	7.1	172
25	On Building a Bridge Between Brain and Behavior. Annual Review of Psychology, 2004, 55, 23-50.	9.9	166
26	Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field. Neuron, 2001, 30, 583-591.	3.8	154
27	From Salience to Saccades: Multiple-Alternative Gated Stochastic Accumulator Model of Visual Search. Journal of Neuroscience, 2012, 32, 3433-3446.	1.7	152
28	Neural correlates of decision processes: neural and mental chronometry. Current Opinion in Neurobiology, 2003, 13, 182-186.	2.0	148
29	Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology, 1983, 220, 465-475.	0.9	147
30	The Role of Working Memory Representations in the Control of Attention. Cerebral Cortex, 2007, 17, i118-i124.	1.6	143
31	Influence of history on saccade countermanding performance in humans and macaque monkeys. Vision Research, 2007, 47, 35-49.	0.7	143
32	Neural Basis of Saccade Target Selection. Reviews in the Neurosciences, 1995, 6, 63-85.	1.4	130
33	Role of Supplementary Eye Field in Saccade Initiation: Executive, Not Direct, Control. Journal of Neurophysiology, 2010, 103, 801-816.	0.9	125
34	Dynamic Dissociation of Visual Selection From Saccade Programming in Frontal Eye Field. Journal of Neurophysiology, 2001, 86, 2634-2637.	0.9	123
35	Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding Psychological Review, 2015, 122, 115-147.	2.7	123
36	Neural correlates of visual and motor decision processes. Current Opinion in Neurobiology, 1998, 8, 211-217.	2.0	122

#	Article	IF	CITATIONS
37	Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vision Research, 2007, 47, 2187-2211.	0.7	115
38	Saccade target selection in macaque during feature and conjunction visual search. Visual Neuroscience, 1999, 16, 81-89.	0.5	108
39	Proactive Inhibitory Control and Attractor Dynamics in Countermanding Action: A Spiking Neural Circuit Model. Journal of Neuroscience, 2009, 29, 9059-9071.	1.7	108
40	Visuomotor Areas of the Frontal Lobe. Cerebral Cortex, 1997, , 527-638.	0.6	104
41	Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: Implications for saccade target selection. Frontiers in Neuroanatomy, 2009, 3, 2.	0.9	103
42	Neural Basis of Adaptive Response Time Adjustment during Saccade Countermanding. Journal of Neuroscience, 2011, 31, 12604-12612.	1.7	103
43	Performance Monitoring Local Field Potentials in the Medial Frontal Cortex of Primates: Anterior Cingulate Cortex. Journal of Neurophysiology, 2008, 99, 759-772.	0.9	100
44	Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems. Visual Neuroscience, 1993, 10, 385-393.	0.5	89
45	Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160193.	1.8	89
46	Reliability of Macaque Frontal Eye Field Neurons Signaling Saccade Targets during Visual Search. Journal of Neuroscience, 2001, 21, 713-725.	1.7	88
47	Executive control of gaze by the frontal lobes. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 396-412.	1.0	84
48	Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vision Research, 2000, 40, 1523-1538.	0.7	83
49	Prefrontal Control of Visual Distraction. Current Biology, 2018, 28, 414-420.e3.	1.8	83
50	Neural mechanisms of saccade target selection: gated accumulator model of the visual–motor cascade. European Journal of Neuroscience, 2011, 33, 1991-2002.	1.2	82
51	Current advances and pressing problems in studies of stopping. Current Opinion in Neurobiology, 2012, 22, 1012-1021.	2.0	82
52	Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit. Journal of Neuroscience, 2014, 34, 5355-5369.	1.7	82
53	Visuomotor Functions in the Frontal Lobe. Annual Review of Vision Science, 2015, 1, 469-498.	2.3	82
54	Frontal Eye Field Contributions to Rapid Corrective Saccades. Journal of Neurophysiology, 2007, 97, 1457-1469.	0.9	79

#	Article	IF	CITATIONS
55	Nonhuman primate event-related potentials indexing covert shifts of attention. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15111-15116.	3.3	74
56	Neural Basis of the Set-Size Effect in Frontal Eye Field: Timing of Attention During Visual Search. Journal of Neurophysiology, 2009, 101, 1699-1704.	0.9	73
57	Relation of frontal eye field activity to saccade initiation during a countermanding task. Experimental Brain Research, 2008, 190, 135-151.	0.7	71
58	Homologous Mechanisms of Visuospatial Working Memory Maintenance in Macaque and Human: Properties and Sources. Journal of Neuroscience, 2012, 32, 7711-7722.	1.7	71
59	Chronometry of Visual Responses in Frontal Eye Field, Supplementary Eye Field, and Anterior Cingulate Cortex. Journal of Neurophysiology, 2005, 94, 2086-2092.	0.9	70
60	The Effect of Visual Search Efficiency on Response Preparation. Psychological Science, 2008, 19, 128-136.	1.8	70
61	Cortical microcircuitry of performance monitoring. Nature Neuroscience, 2019, 22, 265-274.	7.1	68
62	Stopping eye and hand movements: Are the processes independent?. Perception & Psychophysics, 2007, 69, 785-801.	2.3	67
63	Continuous processing in macaque frontal cortex during visual search. Neuropsychologia, 2001, 39, 972-982.	0.7	66
64	Neural Control of Visual Search by Frontal Eye Field: Effects of Unexpected Target Displacement on Visual Selection and Saccade Preparation. Journal of Neurophysiology, 2009, 101, 2485-2506.	0.9	66
65	Nonindependent and nonstationary response times in stopping and stepping saccade tasks. Attention, Perception, and Psychophysics, 2010, 72, 1913-1929.	0.7	63
66	Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys. Journal of Neuroscience, 2011, 31, 15640-15649.	1.7	63
67	Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. Journal of Neurophysiology, 2015, 113, 3242-3255.	0.9	60
68	Programming of double-step saccade sequences: Modulation by cognitive control. Vision Research, 2004, 44, 2707-2718.	0.7	59
69	On the Origin of Event-Related Potentials Indexing Covert Attentional Selection During Visual Search. Journal of Neurophysiology, 2009, 102, 2375-2386.	0.9	58
70	Effects of Search Efficiency on Surround Suppression During Visual Selection in Frontal Eye Field. Journal of Neurophysiology, 2004, 91, 2765-2769.	0.9	56
71	Effect of target-distractor similarity on FEF visual selection in the absence of the target. Experimental Brain Research, 2003, 151, 356-363.	0.7	53
72	Performance Monitoring Local Field Potentials in the Medial Frontal Cortex of Primates: Supplementary Eye Field. Journal of Neurophysiology, 2010, 104, 1523-1537.	0.9	53

#	Article	IF	CITATIONS
73	Functional Distinction Between Visuomovement and Movement Neurons in Macaque Frontal Eye Field During Saccade Countermanding. Journal of Neurophysiology, 2009, 102, 3091-3100.	0.9	52
74	Supplementary Eye Field during Visual Search: Salience, Cognitive Control, and Performance Monitoring. Journal of Neuroscience, 2012, 32, 10273-10285.	1.7	52
75	Response times from ensembles of accumulators. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2848-2853.	3.3	50
76	Accumulators, Neurons, and Response Time. Trends in Neurosciences, 2019, 42, 848-860.	4.2	48
77	Cooperation and Competition among Frontal Eye Field Neurons during Visual Target Selection. Journal of Neuroscience, 2010, 30, 3227-3238.	1.7	46
78	Biophysical Support for Functionally Distinct Cell Types in the Frontal Eye Field. Journal of Neurophysiology, 2009, 101, 912-916.	0.9	42
79	Neuronal control and monitoring of initiation of movements. Muscle and Nerve, 2002, 26, 326-339.	1.0	41
80	Neural Correlates of Correct and Errant Attentional Selection Revealed Through N2pc and Frontal Eye Field Activity. Journal of Neurophysiology, 2010, 104, 2433-2441.	0.9	41
81	Disrupted Saccadic Corollary Discharge in Schizophrenia. Journal of Neuroscience, 2015, 35, 9935-9945.	1.7	40
82	On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search. Journal of Neurophysiology, 2013, 109, 557-569.	0.9	39
83	Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience. Journal of Neurophysiology, 2012, 108, 2737-2750.	0.9	38
84	Decision making. Current Biology, 2005, 15, R9-R11.	1.8	37
85	Neural chronometry and coherency across speed–accuracy demands reveal lack of homomorphism between computational and neural mechanisms of evidence accumulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130071.	1.8	37
86	Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field. Journal of Neurophysiology, 2018, 120, 372-384.	0.9	33
87	Neural control of behavior: countermanding eye movements. Psychological Research, 2000, 63, 299-307.	1.0	31
88	Pre-excitatory pause in frontal eye field responses. Experimental Brain Research, 2001, 139, 53-58.	0.7	30
89	Response inhibition during perceptual decision making in humans and macaques. Attention, Perception, and Psychophysics, 2014, 76, 353-366.	0.7	29
90	Cognitive control of gaze in bipolar disorder and schizophrenia. Psychiatry Research, 2015, 225, 254-262.	1.7	29

#	Article	IF	CITATIONS
91	Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain and Cognition, 2015, 95, 90-98.	0.8	28
92	Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices". Science, 2007, 318, 44-44.	6.0	26
93	Functional Categories of Visuomotor Neurons in Macaque Frontal Eye Field. ENeuro, 2018, 5, ENEURO.0131-18.2018.	0.9	25
94	Measurement of the extraocular spike potential during saccade countermanding. Journal of Neurophysiology, 2011, 106, 104-114.	0.9	24
95	Dissociation of Medial Frontal β-Bursts and Executive Control. Journal of Neuroscience, 2020, 40, 9272-9282.	1.7	24
96	Difficulty of Visual Search Modulates Neuronal Interactions and Response Variability in the Frontal Eye Field. Journal of Neurophysiology, 2007, 98, 2580-2587.	0.9	22
97	Conflict in Cingulate Cortex Function between Humans and Macaque Monkeys: More Apparent than Real. Brain, Behavior and Evolution, 2010, 75, 237-238.	0.9	22
98	Macrocircuits: decision networks. Current Opinion in Neurobiology, 2013, 23, 269-274.	2.0	19
99	Performance Monitoring during Visual Priming. Journal of Cognitive Neuroscience, 2020, 32, 515-526.	1.1	19
100	Priming of Attentional Selection in Macaque Visual Cortex: Feature-Based Facilitation and Location-Based Inhibition of Return. ENeuro, 2020, 7, ENEURO.0466-19.2020.	0.9	19
101	Production, Control, and Visual Guidance of Saccadic Eye Movements. ISRN Neurology, 2013, 2013, 1-17.	1.5	16
102	Microsaccade production during saccade cancelation in a stop-signal task. Vision Research, 2016, 118, 5-16.	0.7	16
103	Reduced pupil dilation during action preparation in schizophrenia. International Journal of Psychophysiology, 2018, 128, 111-118.	0.5	16
104	Neural correlates of goal-directed and non–goal-directed movements. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
105	Weighing the evidence: how the brain makes a decision. Nature Neuroscience, 1999, 2, 108-109.	7.1	15
106	A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. Journal of Neuroscience, 2020, 40, 8513-8529.	1.7	15
107	Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence. Journal of Neurophysiology, 2019, 121, 1300-1314.	0.9	14
108	Concurrent, Distributed Control of Saccade Initiation in the Frontal Eye Field and Superior Colliculus. , 2003, , .		14

7

#	Article	IF	CITATIONS
109	Neural mechanism of priming in visual search. Attention, Perception, and Psychophysics, 2021, 83, 587-602.	0.7	13
110	Decision Making: Neural Correlates of Response Time. Current Biology, 2002, 12, R800-R801.	1.8	12
111	Neural control of visual search by frontal eye field: chronometry of neural events and race model processes. Journal of Neurophysiology, 2016, 115, 1954-1969.	0.9	12
112	Laminar microcircuitry of visual cortex producing attention-associated electric fields. ELife, 2022, 11, .	2.8	12
113	Pop-out search instigates beta-gated feature selectivity enhancement across V4 layers. Proceedings of the United States of America, 2021, 118, .	3.3	11
114	Subthalamic Nucleus Subregion Stimulation Modulates Inhibitory Control. Cerebral Cortex Communications, 2020, 1, tgaa083.	0.7	9
115	Saccade latency in context: Regulation of gaze behavior by supplementary eye field. Behavioral and Brain Sciences, 1993, 16, 588-589.	0.4	8
116	Countermanding Perceptual Decision-Making. IScience, 2020, 23, 100777.	1.9	8
117	Race to explain procrastination. Nature, 1995, 377, 14-15.	13.7	6
118	Visuomotor Transformations Are Modulated by Focused Ultrasound over Frontal Eye Field. Ultrasound in Medicine and Biology, 2021, 47, 679-692.	0.7	4
119	Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention Psychological Review, 2022, 129, 1144-1182.	2.7	4
120	Express saccades during a countermanding task. Journal of Neurophysiology, 2020, 124, 484-496.	0.9	3
121	Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cerebral Cortex, 2022, 32, 5083-5107.	1.6	3
122	The unknown but knowable relationship between Presaccadic Accumulation of activity and Saccade initiation. Journal of Computational Neuroscience, 2021, 49, 213-228.	0.6	2
123	Abundance of Degrees of Freedom. , 2008, , 3-3.		1
124	Performance monitoring reconciles intentional reasons with neural causes. Cognitive Neuroscience, 2014, 5, 214-216.	0.6	1
125	Visual Processing in the Macaque Frontal Eye Field. Frontiers in Neuroscience, 2003, , .	0.0	1
126	Investigating Neural Correlates of Consciousness with Ambiguous Stimuli: Commentary by Jeffrey D. Schall (Nashville, TN). Neuropsychoanalysis, 2000, 2, 32-35.	0.1	0

#	Article	IF	CITATIONS
127	Selective influence and sequential operations: A research strategy for visual search. Visual Cognition, 2019, 27, 387-415.	0.9	0
128	Legacy of Lance M Optican: from math to medical science and back. Journal of Computational Neuroscience, 2021, 49, 209-211.	0.6	0
129	Prefrontal Selection and Control of Covert and Overt Orienting. , 2005, , 117-123.		0
130	MICROCIRCUITRY OF VISUAL PERFORMANCE MONITORING. Journal of Vision, 2017, 17, 1150.	0.1	0
131	Electrophysiological indices of target selection and distractor suppression under varying perceptual load: Evidence for spreading suppression. Journal of Vision, 2017, 17, 979.	0.1	0
132	Microcircuitry of visual performance monitoring in the supplementary eye field: Laminar distribution of visual processing under conflict. Journal of Vision, 2018, 18, 201.	0.1	0
133	Microcircuitry of visual performance monitoring in the supplementary eye field: Laminar distribution of error and reward processing Journal of Vision, 2018, 18, 200.	0.1	0
134	Performance monitoring signals during visual priming. Journal of Vision, 2019, 19, 316b.	0.1	0
135	Cortical microcircuitry of gaze monitoring in supplementary eye field. Journal of Vision, 2019, 19, 306c.	0.1	0
136	Monitoring and proactive control of visual search speed-accuracy tradeoff by supplementary eye field. Journal of Vision, 2019, 19, 144c.	0.1	0