David Madec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4908506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Germylene-β-sulfoxide Hemilabile Ligand in Coordination Chemistry. Inorganic Chemistry, 2021, 60, 423-430.	1.9	7
2	Synthesis and Characterization of a Novel Bisâ€Sulfoxide and Its Evaluation as a Ligand in pâ€Block Chemistry. European Journal of Inorganic Chemistry, 2020, 2020, 3729-3737.	1.0	1
3	The Role of Monoanionic Aryl Pincer Ligands in the Stabilization of Group 14 Metallylenes. European Journal of Inorganic Chemistry, 2020, 2020, 2769-2790.	1.0	8
4	Symmetric and non-symmetric bis-metallylene iron complexes, precursors of iron germanide nanoparticles. Chemical Communications, 2019, 55, 9539-9542.	2.2	12
5	A non-symmetric sulfur-based <i>O</i> , <i>C</i> , <i>O</i> -chelating pincer ligand leading to chiral germylene and stannylene. Dalton Transactions, 2019, 48, 2399-2406.	1.6	11
6	Germylene–sulfoxide as a potential hemilabile ligand: application in coordination chemistry. Dalton Transactions, 2018, 47, 15751-15756.	1.6	12
7	Designed single-source precursors for iron germanide nanoparticles: colloidal synthesis and magnetic properties. Dalton Transactions, 2018, 47, 15114-15120.	1.6	5
8	Palladium and Ruthenium Derivatives Stabilised by bis-Sulfone Ligand. Studia Universitatis Babes-Bolyai Chemia, 2018, 63, 105-116.	0.1	1
9	Reactivity of Bis(sulfonyl) O,C,Oâ€Chelated Metallylenes in Cycloaddition with <i>ortho</i> â€Benzoquinone: An Experimental and Computational Study. European Journal of Inorganic Chemistry, 2017, 2017, 4214-4220.	1.0	9
10	New phosphorus containing bis-sulfone ligands. Studia Universitatis Babes-Bolyai Chemia, 2017, 62, 411-420.	0.1	1
11	Bis‣ulfonyl O,C,Oâ€Chelated Metallylenes (Ge, Sn) as Adjustable Ligands for Iron and Tungsten Complexes. Chemistry - A European Journal, 2016, 22, 1349-1354.	1.7	22
12	Palladium nanoparticles in ionic liquids stabilized by mono-phosphines. Catalytic applications. French-Ukrainian Journal of Chemistry, 2016, 4, 37-50.	0.1	3
13	Iron Complexes with Stabilized Germylenes: Syntheses and Characterizations. Organometallics, 2015, 34, 571-576.	1.1	34
14	A Bis‣ulfonyl O,C,O Aryl Pincer Ligand and its Tin(II) Complex: Synthesis, Structural Studies, and DFT Calculations. Angewandte Chemie - International Edition, 2015, 54, 805-808.	7.2	19
15	Functionalized oxathiacrown macrocycles: Synthesis, characterization and coordination to palladium(II), ruthenium(II) and copper(I). Journal of Organometallic Chemistry, 2014, 755, 72-77.	0.8	7
16	Synthesis of Î ³ -Lactams and Î ³ -Lactones via Intramolecular Pd-Catalyzed Allylic Alkylations. Accounts of Chemical Research, 2014, 47, 3439-3447.	7.6	78
17	Structurally original oxathioethers macrocycles containing an exocyclic double-bond: synthesis, characterization, reactivity, andÂcoordination. Tetrahedron, 2014, 70, 5650-5658.	1.0	2
18	Glycerol – A Nonâ€Innocent Solvent for Rh atalysed Pauson–Khand Carbocyclisations. European Journal of Inorganic Chemistry, 2013, 2013, 5138-5144.	1.0	12

DAVID MADEC

#	Article	IF	CITATIONS
19	2,2,7,7,12,12,17,17-Octamethyl-21,22,23,24-tetrathia-2,7,12,17-tetragermapentacyclo[16.2.1.13,6.18,11.113, Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m37-m37.	16]tetraco	osa-3,5,8,10.1
20	Functionalized 2,3-dihydrofurans via palladium-catalyzed oxyarylation of α-allyl-β-ketoesters. Organic and Biomolecular Chemistry, 2011, 9, 8233.	1.5	8
21	A smart palladium catalyst in ionic liquid for tandem processes. Physical Chemistry Chemical Physics, 2011, 13, 13579.	1.3	34
22	Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. Chemical Communications, 2011, 47, 9206.	2.2	57
23	γ―and δ‣actams through Palladiumâ€Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization. Chemistry - A European Journal, 2011, 17, 2885-2896.	1.7	36
24	Palladium Nanoparticles Applied in Organic Synthesis as Catalytic Precursors. Current Organic Chemistry, 2011, 15, 3127-3174.	0.9	76
25	Palladium-Catalyzed Aromatic Sulfonylation: A New Catalytic Domino Process Exploiting in situ Generated Sulfinate Anions. Synlett, 2011, 2011, 2943-2946.	1.0	9
26	Can Heteroâ€Polysubstituted Cyclodextrins be Considered as Inherently Chiral Concave Molecules?. Angewandte Chemie - International Edition, 2010, 49, 2314-2318.	7.2	42
27	An escapade in the world of sulfenate anions: generation, reactivity and applications in domino processes. Tetrahedron: Asymmetry, 2010, 21, 1075-1084.	1.8	46
28	Palladium-catalyzed intramolecular allylic alkylation of α-sulfinyl carbanions: a new asymmetric route to enantiopure γ-lactams. Tetrahedron Letters, 2010, 51, 1459-1461.	0.7	18
29	Aryl Sulfoxides from Allyl Sulfoxides via [2,3]-Sigmatropic Rearrangement and Domino Pd-Catalyzed Generation/Arylation of Sulfenate Anions. Organic Letters, 2010, 12, 320-323.	2.4	72
30	Enantioselective γ-Lactam Synthesis via Palladium-Catalyzed Intramolecular Asymmetric Allylic Alkylation. Synlett, 2009, 2009, 1441-1444.	1.0	3
31	Phosphineâ€Free Palladiumâ€Catalyzed Allene Carbopalladation/Allylic Alkylation Domino Sequence: A New Route to 4â€(αâ€Styryl) γâ€Lactams. Chemistry - A European Journal, 2009, 15, 4224-4227.	1.7	33
32	Pseudo-domino palladium-catalyzed allylic alkylation/Mizoroki–Heck coupling reaction: a key sequence toward (±)-podophyllotoxin. Tetrahedron Letters, 2008, 49, 760-763.	0.7	27
33	New Picropodophyllin Analogs via Palladium-Catalyzed Allylic Alkylationâ^'Hiyama Cross-Coupling Sequences. Journal of Organic Chemistry, 2008, 73, 5795-5805.	1.7	36
34	Allylic Alkylation and Ring-Closing Metathesis in Sequence:  A Successful Cohabitation of Pd and Ru. Organic Letters, 2008, 10, 405-408.	2.4	60
35	N-Substituted Tetronamides as Ambident Nucleophilic Building Blocks for the Synthesis of New 4-Aza-2,3-didehydropodophyllotoxins. Synlett, 2008, 2008, 1475-1478.	1.0	12
36	New Access to Kainic Acid via Intramolecular Palladium-Catalyzed Allylic Alkylation. Synlett, 2007, 2007, 1521-1524.	1.0	3

DAVID MADEC

#	Article	IF	CITATIONS
37	Hydroxylamine Oxygen as Nucleophile in Palladium(0)- and Palladium(II)-Catalyzed Allylic Alkylation: A Novel Access to Isoxazolidines. Synlett, 2007, 2007, 0944-0948.	1.0	18
38	Enantioselective Synthesis of Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Organic Letters, 2007, 9, 5493-5496.	2.4	97
39	Oxidative Addition of Ligand-Chelated Palladium(0) to Aryl Halides:Â Comparison between 1,2-Bisthioethers and 1,2-Bisphosphines. Organometallics, 2007, 26, 455-458.	1.1	7
40	Preparation of Allyl Sulfoxides by Palladium-Catalyzed Allylic Alkylation of Sulfenate Anions. Journal of Organic Chemistry, 2006, 71, 7449-7454.	1.7	47
41	Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Organic Letters, 2006, 8, 5951-5954.	2.4	101
42	The Application of [γ-(Silyloxy)allylidene]ditin to the Efficient Synthesis of the Chromophore of the Neocarzinostatin Dihydroxycyclopentene-Based Dienediyne Core. European Journal of Organic Chemistry, 2006, 2006, 92-104.	1.2	14
43	Synthesis of 3,5-Disubstituted Piperazinones via Palladium(II)-Catalyzed Amination. Synlett, 2006, 2006, 2133-2135.	1.0	2
44	Palladium-Catalyzed Allylic Alkylation of α-Sulfinyl Carbanions under ÂBiphasic Conditions. Synlett, 2006, 2006, 1055-1058.	1.0	1
45	A Palladium-Catalyzed Sequence of Allylic Alkylation and Hiyama Cross-Coupling: Convenient Synthesis of 4-(α-Styryl) ^{Î3} -Lactones. Synlett, 2006, 2006, 2231-2234.	1.0	3
46	New Enantiopure Bis(thioether) and Bis(sulfoxide) Ligands from Benzothiophene. European Journal of Organic Chemistry, 2005, 2005, 552-557.	1.2	30
47	Surprisingly Mild "Enolate-Counterion-Free―Pd(0)-Catalyzed Intramolecular Allylic Alkylations ChemInform, 2005, 36, no.	0.1	0
48	Surprisingly Mild "Enolate-Counterion-Free―Pd(0)-Catalyzed Intramolecular Allylic Alkylations. Organic Letters, 2005, 7, 995-998.	2.4	48
49	Palladium-catalyzed pseudo-domino cyclizations. Journal of Organometallic Chemistry, 2003, 687, 291-300.	0.8	20
50	Highly regioselective palladium-catalyzed condensation of terminal acetylenes with 2,5-diiodobenzoic acid. Tetrahedron Letters, 1999, 40, 8351-8354.	0.7	10
51	Easy transformations of vinyl N,N-diisopropyl carbamates into silyl enol ethers or aldehydes by addition of methyllithium. Tetrahedron Letters, 1999, 40, 8103-8107.	0.7	12
52	Preparation of 3,3-bis(Tributylstannyl)propenes, Potential New 1,3-Allyl Dianions. Tetrahedron Letters, 1997, 38, 6657-6660.	0.7	19
53	Reactivity of (E)-1-(tert-Butyldimethyl)silyloxy-3,3-bis(tributylstannyl)-Propene : Syn Selective SE′ Addition to Aldehydes. Tetrahedron Letters, 1997, 38, 6661-6664.	0.7	24
54	Oxidation of 3-Tributylstannyl-1-alkenyl carbamates with Selenium Dioxide. Synlett, 1996, 1996, 867-870.	1.0	6

#	Article	IF	CITATIONS
55	Synthesis of Enynes Through Condensation of Acetylides with Vinylcarbamates under Nickel (0) Catalysis. Synlett, 1995, 1995, 435-438.	1.0	25