Gilbert C Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4908336/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developments in Langmuir and What Is in a Strong and Exciting Perspective Article. Langmuir, 2022, 38, 1-2.	1.6	Ο
2	Influence of intraparticle cross-linking on polymer diffusion in latex films prepared from secondary dispersions. Progress in Organic Coatings, 2022, 164, 106691.	1.9	4
3	Virtual Issue: Wettability Gradient Surfaces. Langmuir, 2022, 38, 603-604.	1.6	1
4	Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules, 2022, 55, 1248-1259.	2.2	18
5	Stimulus-Responsive Nanoconjugates Derived from Phytoglycogen Nanoparticles. Biomacromolecules, 2022, 23, 1928-1937.	2.6	6
6	Preface to the Françoise M. Winnik Special Issue. Langmuir, 2022, 38, 5031-5032.	1.6	0
7	Anti-leukemia effect associated with down-regulated CD47 and up-regulated calreticulin by stimulated macrophages in co-culture. Cancer Immunology, Immunotherapy, 2021, 70, 787-801.	2.0	7
8	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
9	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	Ο
10	Langmuir Hosts an ACS Connect Symposium in India. Langmuir, 2021, 37, 603-604.	1.6	0
11	Recent Developments and New Directions for <i>Langmuir</i> . Langmuir, 2021, 37, 1-1.	1.6	1
12	Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light. ACS Energy Letters, 2021, 6, 934-940.	8.8	90
13	Altered Membrane Mechanics Provides a Receptorâ€Independent Pathway for Serotonin Action. Chemistry - A European Journal, 2021, 27, 7533-7541.	1.7	20
14	Phytoglycogen Nanoparticles: Nature-Derived Superlubricants. ACS Nano, 2021, 15, 8953-8964.	7.3	9
15	Remembering Françoise Winnik. Langmuir, 2021, 37, 7627-7629.	1.6	Ο
16	Chemical Composition and Strain at Interfaces between Different Morphologies in Block Copolymer Thin Films. Langmuir, 2021, 37, 12723-12731.	1.6	2
17	Light and Humidity Induced Degradation and Grain Transformation in Mixed Cation Perovskites. , 2021, ,		1
18	Fabry–Pérot Phonon Polaritons in Boron Nitride Nanotube Resonators. Journal of Physical Chemistry Letters, 2021, 12, 11683-11687.	2.1	3

#	Article	IF	CITATIONS
19	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
20	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	Ο
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	Ο
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	Ο
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	Ο
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
38	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
42	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
43	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
44	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
45	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
46	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
47	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
48	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
49	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
50	Confronting Racism in Chemistry Journals. Energy & Fuels, 2020, 34, 7771-7773.	2.5	0
51	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
52	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
58	Extraordinary Mass Transport and Selfâ€Assembly: A Pathway to Fabricate Luminescent CsPbBr ₃ and Lightâ€Emitting Diodes by Vaporâ€Phase Deposition. Advanced Materials Interfaces, 2020, 7, 2000506.	1.9	15
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	Ο
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	Ο
64	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
65	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	О
66	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
67	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	Ο
68	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
69	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
70	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
71	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
72	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	Ο
74	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
75	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
77	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
78	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
79	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
80	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
81	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
82	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
83	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
84	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
85	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
86	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
87	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
88	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
89	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
90	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	Ο
92	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
93	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
94	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
96	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	Ο
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
99	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	Ο
100	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
103	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	Ο
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	Ο
106	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007	1.2	0
108	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	Ο
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	Ο
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	Ο
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	Ο
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
126	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1

#	Article	IF	CITATIONS
127	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
128	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
129	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
130	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
131	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	Ο
132	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
133	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
134	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
135	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
136	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
137	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
138	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
139	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	Ο
140	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
141	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	Ο
142	Preface to the "Metal–Organic Frameworks: Fundamental Study and Applications―Joint Virtual Issue. Langmuir, 2020, 36, 14901-14903.	1.6	2
143	Preface to the Interfacial Science Developments at the Chinese Academy of Sciences Virtual Special Issue. Langmuir, 2020, 36, 12087-12087.	1.6	0
144	Surface and Volume Phonon Polaritons in Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2019, 10, 4851-4856.	2.1	15

#	Article	IF	CITATIONS
145	Nanoscale Subsurface Morphologies in Block Copolymer Thin Films Revealed by Combined Near-Field Infrared Microscopy and Mechanical Mapping. ACS Applied Polymer Materials, 2019, 1, 933-938.	2.0	12
146	Dual-Mode Dark Field and Surface-Enhanced Raman Scattering Liposomes for Lymphoma and Leukemia Cell Imaging. Langmuir, 2019, 35, 1534-1543.	1.6	9
147	Photonic Nanoparticles for Cellular and Tissular Labeling. , 2019, , 147-170.		Ο
148	Ultrabroadband Nanospectroscopy with a Laser-Driven Plasma Source. ACS Photonics, 2018, 5, 1467-1475.	3.2	23
149	Bright Surfaceâ€Enhanced Raman Scattering with Fluorescence Quenching from Silica Encapsulated Jâ€Aggregate Coated Gold Nanoparticles. Advanced Materials, 2018, 30, 1705381.	11.1	40
150	Twist and Shout: Single-Molecule Mechanochemistry. ACS Nano, 2017, 11, 28-30.	7.3	7
151	Hexagonal Boron Nitride Self-Launches Hyperbolic Phonon Polaritons. Journal of Physical Chemistry Letters, 2017, 8, 2158-2162.	2.1	21
152	The Effect of Adjacent Materials on the Propagation of Phonon Polaritons in Hexagonal Boron Nitride. Journal of Physical Chemistry Letters, 2017, 8, 2902-2908.	2.1	17
153	Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles. Annual Review of Physical Chemistry, 2017, 68, 261-283.	4.8	37
154	Homopolymer Nanolithography. Small, 2017, 13, 1702043.	5.2	13
155	Optical hot-spots in boron-nitride nanotubes at mid infrared frequencies: one-dimensional localization due to random-scattering. Optics Express, 2017, 25, 25059.	1.7	7
156	Surface Phonon Coupling within Boron Nitride Nanotubes Resolved by a Novel Near-Field Infrared Pump-Probe Imaging Technique Microscopy and Microanalysis, 2016, 22, 366-367.	0.2	0
157	How a Small Modification of the Corona-Forming Block Redirects the Self-Assembly of Crystalline–Coil Block Copolymers in Solution. Macromolecules, 2016, 49, 7975-7984.	2.2	17
158	Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings. ACS Applied Materials & Interfaces, 2016, 8, 20342-20351.	4.0	15
159	Net charge of trace proteins. Nature Nanotechnology, 2016, 11, 739-740.	15.6	Ο
160	Surface phonon coupling within boron nitride resolved by a novel near-field infrared pump-probe imaging technique. Proceedings of SPIE, 2016, , .	0.8	0
161	Defects and Deformation of Boron Nitride Nanotubes Studied by Joint Nanoscale Mechanical and Infrared Near-Field Microscopy. Journal of Physical Chemistry C, 2016, 120, 1945-1951.	1.5	22
162	Near-Field Infrared Pump–Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 289-294.	2.1	22

#	Article	IF	CITATIONS
163	Dynamic Fluoroalkyl Polyethylene Glycol Coâ€Polymers: A New Strategy for Reducing Protein Adhesion in Labâ€onâ€aâ€Chip Devices. Advanced Functional Materials, 2015, 25, 506-515.	7.8	25
164	Forming End-to-End Oligomers of Gold Nanorods Using Porphyrins and Phthalocyanines. Langmuir, 2015, 31, 6902-6908.	1.6	14
165	How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9270-9275.	3.3	98
166	Cell-Membrane-Mimicking Lipid-Coated Nanoparticles Confer Raman Enhancement to Membrane Proteins and Reveal Membrane-Attached Amyloid-β Conformation. ACS Nano, 2015, 9, 9070-9077.	7.3	81
167	Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105, .	1.5	19
168	Mid-infrared surface phonon polaritons in boron-nitride nanotubes. Journal of Optics (United) Tj ETQq0 0 0 rgBT	/Oyerlock 1.0	10 Tf 50 542
169	Rational Design for the Controlled Aggregation of Gold Nanorods via Phospholipid Encapsulation for Enhanced Raman Scattering. ACS Nano, 2014, 8, 5462-5467.	7.3	60
170	Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes and Graphene. ACS Nano, 2014, 8, 11305-11312.	7.3	38
171	Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters, 2014, 14, 6314-6321.	4.5	92
172	Synthesis, self-assembly and photophysical properties of oligo(2,5-dihexyloxy-1,4-phenylene) Tj ETQq0 0 0 rgBT /	Overlock	10 Jf 50 382
173	One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Communications, 2014, 5, 4782.	5.8	140
174	Organometallic–Polypeptide Diblock Copolymers: Synthesis by Diels–Alder Coupling and Crystallization-Driven Self-Assembly to Uniform Truncated Elliptical Lamellae. Macromolecules, 2014, 47, 2604-2615.	2.2	23
175	A design strategy for the hierarchical fabrication of colloidal hybrid mesostructures. Nature Communications, 2014, 5, 3882.	5.8	73
176	pH changes the aggregation propensity of amyloid-Î ² without altering the monomer conformation. Physical Chemistry Chemical Physics, 2014, 16, 885-889.	1.3	27
177	Characterization of the mechanical properties of microgels acting as cellular microenvironments. Soft Matter, 2013, 9, 2959.	1.2	37
178	Surface-Enhanced Raman Scattering Dye-Labeled Au Nanoparticles for Triplexed Detection of Leukemia and Lymphoma Cells and SERS Flow Cytometry. Langmuir, 2013, 29, 1908-1919.	1.6	95
179	Diameter-Dependent Bending Modulus of Individual Multiwall Boron Nitride Nanotubes. Journal of Physical Chemistry B, 2013, 117, 4618-4625.	1.2	35
180	Self-Seeding in One Dimension: A Route to Uniform Fiber-like Nanostructures from Block Copolymers with a Crystallizable Core-Forming Block. ACS Nano, 2013, 7, 3754-3766.	7.3	98

#	Article	IF	CITATIONS
181	Mechanical stability of phase-segregated multicomponent lipid bilayers enhanced by PS-b-PEO diblock copolymers. Soft Matter, 2013, 9, 6245.	1.2	7
182	Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.	1.2	18
183	Full Spectroscopic Tip-Enhanced Raman Imaging of Single Nanotapes Formed from β-Amyloid(1–40) Peptide Fragments. ACS Nano, 2013, 7, 911-920.	7.3	96
184	Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves. Journal of Physical Chemistry C, 2013, 117, 6821-6825.	1.5	50
185	Surface-Enhanced Raman Spectroscopy Using Lipid Encapsulated Plasmonic Nanoparticles and J-Aggregates To Create Locally Enhanced Electric Fields. Journal of Physical Chemistry C, 2013, 117, 1879-1886.	1.5	18
186	Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 55-64.	1.7	26
187	Phase Controlled Homodyne Infrared Near-Field Microscopy and Spectroscopy Reveal Inhomogeneity within and among Individual Boron Nitride Nanotubes. Journal of Physical Chemistry A, 2013, 117, 3348-3354.	1.1	46
188	Lipid-encapsulation of surface enhanced Raman scattering (SERS) nanoparticles and targeting to chronic lymphocytic leukemia (CLL) cells. Proceedings of SPIE, 2012, , .	0.8	8
189	Single Polymer Studies of Hydrophobic Hydration. Accounts of Chemical Research, 2012, 45, 2011-2021.	7.6	57
190	Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells. Proceedings of SPIE, 2012, , .	0.8	0
191	Probing of Ni-Encapsulated Ferromagnetic Boron Nitride Nanotubes by Time-Resolved and Steady-State Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 12803-12809.	1.5	15
192	Microdomain Orientation of Diblock Copolymer Ultrathin Films Solvent Annealed at Low Temperatures. Macromolecules, 2011, 44, 3901-3909.	2.2	10
193	Imaging Secondary Structure of Individual Amyloid Fibrils of a β ₂ -Microglobulin Fragment Using Near-Field Infrared Spectroscopy. Journal of the American Chemical Society, 2011, 133, 7376-7383.	6.6	51
194	Signature of hydrophobic hydration in a single polymer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16527-16532.	3.3	150
195	Phospholipid Membrane Encapsulation of Nanoparticles for Surface-Enhanced Raman Scattering. Langmuir, 2011, 27, 7024-7033.	1.6	52
196	The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling, 2011, 27, 137-149.	0.8	45
197	Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. Soft Matter, 2010, 6, 3237.	1.2	77
198	Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. International Journal of Hydrogen Energy, 2010, 35, 4138-4143.	3.8	80

#	Article	IF	CITATIONS
199	Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability. Biofouling, 2010, 26, 657-666.	0.8	97
200	Cholesterol-Dependent Nanomechanical Stability of Phase-Segregated Multicomponent Lipid Bilayers. Biophysical Journal, 2010, 99, 507-516.	0.2	96
201	Interfacial Free Energy Governs Single Polystyrene Chain Collapse in Water and Aqueous Solutions. Journal of the American Chemical Society, 2010, 132, 6530-6540.	6.6	90
202	Microgels with an Interpenetrating Network Structure as a Model System for Cell Studies. Macromolecules, 2010, 43, 7277-7281.	2.2	32
203	Phase Segregation of Untethered Zwitterionic Model Lipid Bilayers Observed on Mercaptoundecanoic-Acid-Modified Gold by AFM Imaging and Force Mapping. Langmuir, 2010, 26, 11060-11070.	1.6	18
204	Self-Assembly of Colloidal Quantum Dots on the Scaffold of Triblock Copolymer Micelles. ACS Applied Materials & Interfaces, 2010, 2, 3160-3169.	4.0	25
205	Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission. Optics Express, 2010, 18, 7705.	1.7	44
206	Insights into the composition, morphology, and formation of the calcareous shell of the serpulid Hydroides dianthus. Journal of Structural Biology, 2010, 169, 145-160.	1.3	65
207	Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Letters, 2010, 292, 91-97.	3.2	71
208	Targeting CLL Cells Using Rituximab-Conjugated Surface Enhanced Raman Scattering (SERS) Gold Nanoparticles. Blood, 2010, 116, 2691-2691.	0.6	0
209	The effect of periodicity on the extraordinary optical transmission of annular aperture arrays. Applied Physics Letters, 2009, 94, .	1.5	38
210	Water-Stable Diblock Polystyrene- <i>block</i> -poly(2-vinyl pyridine) and Diblock Polystyrene- <i>block</i> -poly(methyl methacrylate) Cylindrical Patterned Surfaces Inhibit Settlement of Zoospores of the Green Alga Ulva. Biomacromolecules, 2009, 10, 1004-1012.	2.6	40
211	The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling. Biofouling, 2009, 26, 235-246.	0.8	61
212	Approaches in designing non-toxic polymer surfaces to deter marine biofouling. Soft Matter, 2009, 5, 4088.	1.2	147
213	Nanoscale structures and mechanics of barnacle cement. Biofouling, 2009, 25, 263-275.	0.8	93
214	Assembly, Tuning and Use of an Apertureless Near Field Infrared Microscope for Protein Imaging. Journal of Visualized Experiments, 2009, , .	0.2	3
215	Differential Conductivity in Selfâ€Assembled Nanodomains of a Diblock Copolymer Using Polystyreneâ€ <i>block</i> â€Poly(ferrocenylethylmethylsilane). Advanced Materials, 2008, 20, 1989-1993.	11.1	22
216	Inside Front Cover: Differential Conductivity in Self-Assembled Nanodomains of a Diblock Copolymer Using Polystyrene-block-Poly(ferrocenylethylmethylsilane) (Adv. Mater. 10/2008). Advanced Materials, 2008, 20, 1806-1806.	11.1	0

#	Article	IF	CITATIONS
217	A Water-Soluble pH-Responsive Molecular Brush of Poly(<i>N</i> , <i>N</i> -dimethylaminoethyl) Tj ETQq1 1 0.7	784314 rgBT 2.2	/Qyerlock 1(
218	Pressure-Induced Restructuring of a Monolayer Film Nanojunction Produces Threshold and Power Law Conduction. Langmuir, 2008, 24, 2288-2293.	1.6	4
219	Immuno-Atomic Force Microscopy Characterization of Adsorbed Fibronectin. Langmuir, 2008, 24, 13842-13849.	1.6	12
220	Nanomechanical Fingerprints of Individual Blocks of a Diblock Copolymer Chain. Langmuir, 2008, 24, 5197-5201.	1.6	13
221	Chemical Imaging of the Surface of Self-Assembled Polystyrene-b-Poly(methyl methacrylate) Diblock Copolymer Films Using Apertureless Near-Field IR Microscopy. Langmuir, 2008, 24, 6946-6951.	1.6	22
222	Infrared Near-Field Detection of a Narrow Resonance Due to Molecular Vibrations in a Nanoparticle. Langmuir, 2007, 23, 2829-2837.	1.6	9
223	Force-Induced Globule-Coil Transition in Single Polystyrene Chains in Water. Journal of the American Chemical Society, 2007, 129, 10046-10047.	6.6	58
224	Ordered CdSe Nanoparticles within Self-Assembled Block Copolymer Domains on Surfaces. Langmuir, 2007, 23, 1612-1614.	1.6	53
225	Exploring Microfluidic Routes to Microgels of Biological Polymers. Macromolecular Rapid Communications, 2007, 28, 527-538.	2.0	196
226	Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Materials, 2007, 6, 609-614.	13.3	746
227	Field localization in very small aperture lasers studied by apertureless near-field microscopy. Applied Optics, 2006, 45, 6192.	2.1	9
228	Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology. Journal of the American Chemical Society, 2006, 128, 12205-12210.	6.6	335
229	Probing Single Polymer Chain Mechanics Using Atomic Force Microscopy. ACS Symposium Series, 2005, , 148-161.	0.5	3
230	Apertureless Scanning Near-Field IR Microscopy for Chemical Imaging of Thin Films. ACS Symposium Series, 2005, , 51-64.	0.5	0
231	Surface Mechanical Properties of the Spore Adhesive of the Green AlgaUlva. Journal of Adhesion, 2005, 81, 1101-1118.	1.8	23
232	Single-Molecule AFM Study of Polystyrene Grafted at Gold Surfaces. Journal of Adhesion, 2005, 81, 999-1016.	1.8	14
233	Ferrocenylundecanethiol Self-Assembled Monolayer Charging Correlates with Negative Differential Resistance Measured by Conducting Probe Atomic Force Microscopy. Journal of the American Chemical Society, 2005, 127, 7647-7653.	6.6	42
234	Force Microscopy Studies of Fibronectin Adsorption and Subsequent Cellular Adhesion to Substrates with Well-Defined Surface Chemistries. Langmuir, 2005, 21, 4096-4107.	1.6	53

#	Article	IF	CITATIONS
235	Quantifying Adhesion Bond Parameters to Distinguish Interactions of Hydrophilic and Hydrophobic Blocks of Polystyreneâ`'Poly-2-vinylpyridine with a Silicon Nitride Surface. Journal of the American Chemical Society, 2005, 127, 4136-4137.	6.6	9
236	Conjugated Thiol Linker for Enhanced Electrical Conduction of Goldâ^'Molecule Contacts. Journal of Physical Chemistry B, 2005, 109, 5398-5402.	1.2	77
237	Viscoelastic Response of Poly(dimethylsiloxane) in the Adhesive Interaction with AFM Tips. Langmuir, 2005, 21, 8694-8702.	1.6	23
238	Using the Adhesive Interaction between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Samples. Langmuir, 2004, 20, 5837-5845.	1.6	177
239	Surface elastic modulus of barnacle adhesive and release characteristics from silicone surfaces. Biofouling, 2004, 20, 279-289.	0.8	106
240	The role of adhesion forces in nanoscale measurements of the conductive properties of organic surfaces using conductive probe AFM. , 2004, , .		0
241	Probing protein hydration by the difference Oî—,H (Oî—,D) vibrational spectroscopy: Interfacial percolation network involving highly polarizable water-water hydrogen bonds. Journal of Molecular Liquids, 2003, 105, 13-36.	2.3	39
242	Single-Molecule Force Spectroscopy of Isolated and Aggregated Fibronectin Proteins on Negatively Charged Surfaces in Aqueous Liquids. Langmuir, 2003, 19, 9566-9572.	1.6	57
243	Adhesion Forces in Conducting Probe Atomic Force Microscopy. Langmuir, 2003, 19, 1929-1934.	1.6	30
244	Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser. Applied Physics Letters, 2003, 83, 3245-3247.	1.5	67
245	Vibrational Mode Coupling to Ultrafast Electron Transfer in [(CN)5OsCNRu(NH3)5]-Studied by Femtosecond Infrared Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 9051-9058.	1.1	19
246	Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy. Review of Scientific Instruments, 2003, 74, 3670-3674.	0.6	27
247	Application of Scanning Force and Near Field Microscopies to the Characterization of Minimally Adhesive Polymer Surfaces. Biofouling, 2003, 19, 99-104.	0.8	8
248	A study of near-field aperture geometry effects on very small aperture lasers (VSAL). , 2003, , .		4
249	Developing Vibrational Infrared Near Field Spectroscopy to Characterize Polymer Structures on Surfaces: Identification and Reduction of Topographic Coupling Artifacts. Bulletin of the Chemical Society of Japan, 2002, 75, 1011-1018.	2.0	1
250	Monolayer-Sensitive Infrared Imaging of DNA Stripes Using Apertureless Near-Field Microscopy. Langmuir, 2002, 18, 5325-5328.	1.6	42
251	Two-Dimensional Self-Assembly of Latex Particles in Wetting Films on Patterned Polymer Surfaces. Journal of Physical Chemistry B, 2002, 106, 2217-2223.	1.2	37
252	Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers. Journal of the American Chemical Society, 2002, 124, 9034-9035.	6.6	765

#	Article	IF	CITATIONS
253	Study of the Polydispersity of Grafted Poly(dimethylsiloxane) Surfaces Using Single-Molecule Atomic Force Microscopy. Journal of Physical Chemistry B, 2001, 105, 3965-3971.	1.2	68
254	Apertureless Scanning Near-Field Infrared Microscopy of a Rough Polymeric Surface. Langmuir, 2001, 17, 2774-2781.	1.6	48
255	Force Modulation Elasticity Mapping of Plastic-embedded, Thin-sectioned Skeletal Muscle. Microscopy and Microanalysis, 2001, 7, 32-38.	0.2	5
256	Infrared Absorption and Ultraviolet-Circular Dichroism Spectral Studies of Thermally Induced Unfolding of Apomyoglobin. Applied Spectroscopy, 2000, 54, 9-14.	1.2	7
257	Ultrafast Infrared Spectroscopy of Vibrational States Prepared by Photoinduced Electron Transfer in (CN)5FeCNRu(NH3)5 Journal of Physical Chemistry A, 2000, 104, 4314-4320.	1.1	48
258	Ultrafast Infrared and Visible Spectroscopy of Intermolecular Electron Transfer From Dimethyl Aniline to Coumarin 337. Laser Chemistry, 1999, 19, 403-405.	0.5	3
259	Vibrational Mode Coupling to Reverse Electron Transfer in (CN)5FeCNRu(NH3)5â^' in Solution. Laser Chemistry, 1999, 19, 385-387.	0.5	1
260	Finite Sample Thickness Effects on Elasticity Determination Using Atomic Force Microscopy. Langmuir, 1999, 15, 5630-5634.	1.6	74
261	Single Polymer Chain Elongation by Atomic Force Microscopy. Langmuir, 1999, 15, 2799-2805.	1.6	123
262	Solvent Control of Vibronic Coupling upon Intervalence Charge Transfer Excitation of (CN)5FeCNRu(NH3)5- as Revealed by Resonance Raman and Near-Infrared Absorption Spectroscopies. Journal of the American Chemical Society, 1998, 120, 5848-5849.	6.6	40
263	Modeling the Interactions between Atomic Force Microscope Tips and Polymeric Substrates. Langmuir, 1998, 14, 4615-4622.	1.6	10
264	Atomic Force Microscopy Studies of Hydration of Fluorinated Amide/Urethane Copolymer Film Surfaces. Langmuir, 1998, 14, 3976-3982.	1.6	33
265	Photoinduced Release of Nitric Oxide from S-nitrosoglutathione. Springer Series in Chemical Physics, 1998, , 603-605.	0.2	Ο
266	Conformational Restriction of Cysteine-Bound NO in Bovine Serum Albumin Revealed by Circular Dichroism. Journal of the American Chemical Society, 1997, 119, 9311-9312.	6.6	12
267	Femtosecond Infrared and Visible Spectroscopy of Photoinduced Intermolecular Electron Transfer Dynamics and Solventâ 'Solute Reaction Geometries:  Coumarin 337 in Dimethylaniline. Journal of Physical Chemistry A, 1997, 101, 2735-2738.	1.1	30
268	A femtosecond absorption spectrometer tunable from 50 000 to 800 cmâ^'1: Nonlinear optics and pump/probe geometries. Review of Scientific Instruments, 1996, 67, 3799-3805.	0.6	21
269	Femtosecond time-resolved infrared laser study of the Jâ^'K transition of bacteriorhodopsin. Chemical Physics Letters, 1995, 241, 109-115.	1.2	41
270	Femtosecond experiments on solvation dynamics of an anionic probe molecule in methanol. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87, 127-133.	2.0	39

#	Article	IF	CITATIONS
271	Femtosecond coherent transient infrared spectroscopy of reaction centers from Rhodobacter sphaeroides Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10360-10364.	3.3	54
272	Femtosecond electron transfer: Experiment and theory. Pure and Applied Chemistry, 1993, 65, 1677-1680.	0.9	9
273	Ultrafast Torsional Relaxation from the Barrier Region for an Excitedâ€State Isomerization in Solution: 9â€Carbonylanthracenes. Israel Journal of Chemistry, 1993, 33, 199-206.	1.0	7
274	Temperature dependence of the inverted regime electron transfer kinetics of betaineâ€30 and the role of molecular modes. Journal of Chemical Physics, 1992, 96, 7859-7862.	1.2	81
275	Ultrafast studies on proton transfer in photostabilizers. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 65, 165-175.	2.0	25
276	Specific excitation of the solvent coordinate in the S3→S1 and S1→S0 radiationless decay of the betaines. Chemical Physics Letters, 1992, 196, 159-165.	1.2	39
277	Nonexponential solvation dynamics of simple liquids and mixtures. Chemical Physics, 1991, 152, 57-68.	0.9	194
278	Dynamic solvent effects on electron transfer rates in the inverted regime: Ultrafast studies on the betaines. Journal of Chemical Physics, 1991, 95, 4188-4194.	1.2	132
279	Ultrafast measurements on direct photoinduced electron transfer in a mixed-valence complex. The Journal of Physical Chemistry, 1991, 95, 5712-5715.	2.9	117
280	Ultraviolet femtosecond fluorescence spectroscopy: techniques and applications. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1521.	0.9	39
281	Degenerate four-wave mixing experiments on polyacene quinones. Chemical Physics Letters, 1989, 154, 193-198.	1.2	10
282	Ultrafast Measurements on Excited State Isomerization. Reviews of Chemical Intermediates, 1988, 10, 1-33.	1.1	5
283	Femtosecond microscopic solvation dynamics of aqueous solutions. The Journal of Physical Chemistry, 1988, 92, 7039-7041.	2.9	242