
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4908273/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine**. Chemistry - A<br>European Journal, 2022, 28, .                                                      | 3.3  | 20        |
| 2  | Mechanochemical vs Wet Approach for Directing CO <sub>2</sub> Capture toward Various Carbonate and Bicarbonate Networks. ACS Sustainable Chemistry and Engineering, 2022, 10, 4374-4380.   | 6.7  | 3         |
| 3  | Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time <i>In Situ</i> Monitoring. Accounts of Chemical Research, 2022, 55, 1262-1277.                               | 15.6 | 34        |
| 4  | Mechanistic Study of the Mechanochemical Pd <sup>II</sup> -Catalyzed Bromination of Aromatic C–H<br>Bonds by Experimental and Computational Methods. Organometallics, 2022, 41, 1284-1294. | 2.3  | 8         |
| 5  | Open versus Interpenetrated: Switchable Supramolecular Trajectories in Mechanosynthesis of a<br>Halogen-Bonded Borromean Network. CheM, 2021, 7, 146-154.                                  | 11.7 | 17        |
| 6  | Mechanochemical Synthesis and Thermal Dehydrogenation of Novel Calcium-Containing Bimetallic Amidoboranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2089-2099.                  | 6.7  | 5         |
| 7  | Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions.<br>Nature Protocols, 2021, 16, 3492-3521.                                                    | 12.0 | 46        |
| 8  | Using Desmotropes, Cocrystals, and Salts to Manipulate Reactivity in Mechanochemical Organic<br>Reactions. Journal of Organic Chemistry, 2021, 86, 14160-14168.                            | 3.2  | 14        |
| 9  | Real-Time Observation of "Soft―Magic-Size Clusters during Hydrolysis of the Model Metallodrug<br>Bismuth Disalicylate. Journal of the American Chemical Society, 2021, 143, 16332-16336.   | 13.7 | 5         |
| 10 | Mechanochemical oxidation of graphite for graphene-hydrogel applications: Pitfalls and benefits.<br>Materialia, 2020, 14, 100908.                                                          | 2.7  | 3         |
| 11 | A Detailed Kinetico-Mechanistic Investigation on the Palladium C–H Bond Activation in Azobenzenes<br>and Their Monopalladated Derivatives. Inorganic Chemistry, 2020, 59, 17123-17133.     | 4.0  | 7         |
| 12 | Mechanochemical Metathesis between AgNO <sub>3</sub> and NaX (X = Cl, Br, I) and<br>Ag <sub>2</sub> XNO <sub>3</sub> Double-Salt Formation. Inorganic Chemistry, 2020, 59, 12200-12208.    | 4.0  | 7         |
| 13 | DNA-specific selectivity in pairing of model nucleobases in the solid state. Chemical Communications, 2020, 56, 13524-13527.                                                               | 4.1  | 7         |
| 14 | Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 18889-18902.                                          | 6.7  | 18        |
| 15 | Mechanochemical Preparation of Active Pharmaceutical Ingredients Monitored by <i>In Situ</i> Raman Spectroscopy. ACS Omega, 2020, 5, 28663-28672.                                          | 3.5  | 38        |
| 16 | Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie -<br>International Edition, 2020, 59, 13458-13462.                                          | 13.8 | 41        |
| 17 | Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie, 2020, 132, 13560-13564.                                                                    | 2.0  | 12        |
|    |                                                                                                                                                                                            |      |           |

18 European Research in Focus: Mechanochemistry for Sustainable Industry (COST Action) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,62 Td (<i>2.4

| #  | Article                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Impact of dehydration and mechanical amorphization on the magnetic properties of<br>Ni( <scp>ii</scp> )-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.                                                                                                                                           | 5.5  | 21        |
| 20 | Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki<br>Polymerization. Angewandte Chemie - International Edition, 2019, 58, 18942-18947.                                                                                                                             | 13.8 | 75        |
| 21 | Facile Mechanochemical Anion Substitution in Cyclopalladated Azo-Benzenes. Organometallics, 2019, 38, 4479-4484.                                                                                                                                                                                                | 2.3  | 8         |
| 22 | Direkte Mechanokatalyse: Palladium als Mahlmaterial und Katalysator in der mechanochemischen<br>Suzukiâ€Polymerisation. Angewandte Chemie, 2019, 131, 19118-19123.                                                                                                                                              | 2.0  | 23        |
| 23 | Control of Pharmaceutical Cocrystal Polymorphism on Various Scales by Mechanochemistry:<br>Transfer from the Laboratory Batch to the Large-Scale Extrusion Processing. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 7102-7110.                                                                        | 6.7  | 47        |
| 24 | Isotope Labeling Reveals Fast Atomic and Molecular Exchange in Mechanochemical Milling Reactions.<br>Journal of the American Chemical Society, 2019, 141, 1212-1216.                                                                                                                                            | 13.7 | 34        |
| 25 | Experimental and Theoretical Study of Selectivity in Mechanochemical Cocrystallization of<br>Nicotinamide with Anthranilic and Salicylic Acid. Crystal Growth and Design, 2018, 18, 1539-1547.                                                                                                                  | 3.0  | 22        |
| 26 | Enthalpy <i>vs.</i> friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chemical Science, 2018, 9, 2525-2532.                                                                                                                                     | 7.4  | 77        |
| 27 | Mechanochemical carbon–carbon bond formation that proceeds <i>via</i> a cocrystal intermediate.<br>Chemical Communications, 2018, 54, 13216-13219.                                                                                                                                                              | 4.1  | 46        |
| 28 | Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks.<br>Chemical Communications, 2018, 54, 6999-7002.                                                                                                                                                                   | 4.1  | 63        |
| 29 | Mechanochemistry for "no solvent, no base―preparation of hydantoin-based active pharmaceutical<br>ingredients: nitrofurantoin and dantrolene. Green Chemistry, 2018, 20, 2973-2977.                                                                                                                             | 9.0  | 78        |
| 30 | Mechanism of Mechanochemical Câ^'H Bond Activation in an Azobenzene Substrate by Pd <sup>II</sup><br>Catalysts. Chemistry - A European Journal, 2018, 24, 10672-10682.                                                                                                                                          | 3.3  | 28        |
| 31 | Reversible Gas–Solid Ammonia N–H Bond Activation Mediated by an Organopalladium Complex.<br>Inorganic Chemistry, 2017, 56, 5342-5351.                                                                                                                                                                           | 4.0  | 11        |
| 32 | Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving<br>Structurally Unknown Phases. Chemistry - A European Journal, 2017, 23, 13941-13949.                                                                                                                             | 3.3  | 70        |
| 33 | In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal–Organic Framework HKUST-1:<br>Effect of Liquid Additives on the Milling Reactivity. Inorganic Chemistry, 2017, 56, 6599-6608.                                                                                                                | 4.0  | 98        |
| 34 | Inâ€Situ and Realâ€time Monitoring of Mechanochemical Preparation of<br>Li <sub>2</sub> Mg(NH <sub>2</sub> BH <sub>3</sub> ) <sub>4</sub> and<br>Na <sub>2</sub> Mg(NH <sub>2</sub> BH <sub>3</sub> ) <sub>4</sub> and Their Thermal<br>Dehydrogenation. Chemistry - A European Journal, 2017, 23, 16274-16282. | 3.3  | 21        |
| 35 | Solvent-free copper-catalyzed click chemistry for the synthesis of <i>N</i> -heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein Journal of Organic Chemistry, 2017, 13, 2352-2363.                                                                                                           | 2.2  | 40        |
| 36 | Solid-State Chemistry and Polymorphism of the Nucleobase Adenine. Crystal Growth and Design, 2016, 16, 3262-3270.                                                                                                                                                                                               | 3.0  | 21        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Vapour-induced solid-state C–H bond activation for the clean synthesis of an organopalladium<br>biothiol sensor. Chemical Communications, 2016, 52, 12960-12963.                                              | 4.1  | 15        |
| 38 | Mechanochemical Preparation of 3,5-Disubstituted Hydantoins from Dipeptides and Unsymmetrical<br>Ureas of Amino Acid Derivatives. Journal of Organic Chemistry, 2016, 81, 9802-9809.                          | 3.2  | 29        |
| 39 | On the predictability of supramolecular interactions in molecular cocrystals – the view from the bench. CrystEngComm, 2016, 18, 5434-5439.                                                                    | 2.6  | 47        |
| 40 | Synthesis and structure characterization of zinc and cadmium dipeptide coordination polymers. New<br>Journal of Chemistry, 2016, 40, 4252-4257.                                                               | 2.8  | 13        |
| 41 | <i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.                                   | 13.7 | 194       |
| 42 | Exploring the Effect of Temperature on a Mechanochemical Reaction by in Situ Synchrotron Powder<br>X-ray Diffraction. Crystal Growth and Design, 2016, 16, 2342-2347.                                         | 3.0  | 93        |
| 43 | In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Communications, 2015, 6, 6662.                                                   | 12.8 | 294       |
| 44 | Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chemical Communications, 2015, 51, 8058-8061.                                                    | 4.1  | 79        |
| 45 | Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.<br>Journal of Physical Chemistry Letters, 2015, 6, 4129-4140.                                               | 4.6  | 149       |
| 46 | Anthracene adamantylbisurea receptors: switching of anion binding by photocyclization.<br>Tetrahedron, 2015, 71, 9321-9327.                                                                                   | 1.9  | 9         |
| 47 | Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions<br>fromm-Hydroxycycloalkyl-Substituted Phenol Derivatives. Journal of Organic Chemistry, 2015, 80,<br>12420-12430. | 3.2  | 4         |
| 48 | Crystal structure of copper( <scp>ii</scp> ) citrate monohydrate solved from a mixture powder X-ray diffraction pattern. Powder Diffraction, 2014, 29, 28-32.                                                 | 0.2  | 3         |
| 49 | Mechanochemically induced crossâ€dimerizations of nitrosobenzenes. Kinetics and solidâ€state isotope effects. Journal of Physical Organic Chemistry, 2014, 27, 177-182.                                       | 1.9  | 5         |
| 50 | Laboratory Realâ€Time and In Situ Monitoring of Mechanochemical Milling Reactions by Raman<br>Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 6193-6197.                                   | 13.8 | 160       |
| 51 | Aging and Ball-Milling as Low-Energy and Environmentally Friendly Methods for the Synthesis of Pd(II)<br>Photosensitizers. Organometallics, 2014, 33, 1227-1234.                                              | 2.3  | 27        |
| 52 | Quantitative in situ and real-time monitoring of mechanochemical reactions. Faraday Discussions, 2014, 170, 203-221.                                                                                          | 3.2  | 73        |
| 53 | The physiological target for Leu <scp>RS</scp> translational quality control is norvaline. EMBO<br>Journal, 2014, 33, 1639-1653.                                                                              | 7.8  | 58        |
| 54 | Multiple Solid Forms of 1,5-Bis(salicylidene)carbohydrazide: Polymorph-Modulated Thermal Reactivity.<br>Crystal Growth and Design, 2014, 14, 2900-2912.                                                       | 3.0  | 16        |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The curious case of (caffeine)·(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal. Chemical Science, 2013, 4, 4417.                                         | 7.4  | 115       |
| 56 | In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nature Protocols, 2013, 8, 1718-1729.                                                 | 12.0 | 132       |
| 57 | Realâ€Time Inâ€Situ Powder Xâ€ray Diffraction Monitoring of Mechanochemical Synthesis of<br>Pharmaceutical Cocrystals. Angewandte Chemie - International Edition, 2013, 52, 11538-11541.         | 13.8 | 141       |
| 58 | Vî€Oâ<⊂C interactions in crystal structures of oxovanadium-coordination compounds. New Journal of Chemistry, 2013, 37, 619-623.                                                                  | 2.8  | 13        |
| 59 | Aryl substituted adamantane–dipyrromethanes: chromogenic and fluorescent anion sensors.<br>Tetrahedron, 2013, 69, 1725-1734.                                                                     | 1.9  | 15        |
| 60 | Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5, 66-73.                                                                                         | 13.6 | 493       |
| 61 | Photoinduced Hâ€Abstraction in Homo―and Protoadamantylphthalimide Derivatives in Solution and in<br>Organized and Constrained Media. European Journal of Organic Chemistry, 2013, 2013, 929-938. | 2.4  | 7         |
| 62 | Dynamic Molecular Recognition in Solid State for Separating Mixtures of Isomeric Dicarboxylic Acids.<br>Angewandte Chemie - International Edition, 2013, 52, 5504-5508.                          | 13.8 | 44        |
| 63 | An Old Story in New Light: X-Ray Powder Diffraction Provides Novel Insights into a Long-Known<br>Organic Solid-State Rearrangement Reaction. Croatica Chemica Acta, 2013, 86, 187-192.           | 0.4  | 2         |
| 64 | Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic<br>Frameworks and Metallodrugs. Croatica Chemica Acta, 2012, 85, 367-378.                             | 0.4  | 67        |
| 65 | Mechanosynthesis of nitrosobenzenes: a proof-of-principle study in combining solvent-free synthesis with solvent-free separations. Green Chemistry, 2012, 14, 1597.                              | 9.0  | 50        |
| 66 | Structures of four polymorphs of the pesticide dithianon solved from X-ray powder diffraction data.<br>Acta Crystallographica Section B: Structural Science, 2012, 68, 661-666.                  | 1.8  | 4         |
| 67 | A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents. Green Chemistry, 2012, 14, 2462.    | 9.0  | 80        |
| 68 | Three routes to nickel(ii) salicylaldehyde 4-phenyl and 4-methylthiosemicarbazonato complexes:<br>mechanochemical, electrochemical and conventional approach. CrystEngComm, 2012, 14, 3039.      | 2.6  | 16        |
| 69 | Desmotropy, Polymorphism, and Solidâ€State Proton Transfer: Four Solid Forms of an Aromatic<br><i>o</i> â€Hydroxy Schiff Base. Chemistry - A European Journal, 2012, 18, 5620-5631.              | 3.3  | 41        |
| 70 | Thermally induced crystal-to-crystal transformations accompanied by changes in the magnetic properties of a Cu <sup>II</sup> -p-hydroquinonate polymer. CrystEngComm, 2011, 13, 391-395.         | 2.6  | 15        |
| 71 | Surface nucleation in solid-state dimerisation of nitrosobenzenes promoted by sublimation.<br>CrystEngComm, 2011, 13, 4307.                                                                      | 2.6  | 10        |
| 72 | The cocrystal of 4-oxopimelic acid and 4,4′-bipyridine: polymorphism and solid-state transformations.<br>New Journal of Chemistry, 2011, 35, 24-27.                                              | 2.8  | 15        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding. CrystEngComm, 2011, 13, 3125.                                                                                              | 2.6  | 40        |
| 74 | Mechanosynthesis of the Metallodrug Bismuth Subsalicylate from Bi <sub>2</sub> O <sub>3</sub> and<br>Structure of Bismuth Salicylate without Auxiliary Organic Ligands. Angewandte Chemie -<br>International Edition, 2011, 50, 7858-7861.                      | 13.8 | 110       |
| 75 | Ion―and Liquidâ€Assisted Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks<br>Reveals Salt Inclusion and Anion Templating. Angewandte Chemie - International Edition, 2010, 49,<br>712-715.                                              | 13.8 | 343       |
| 76 | Structural and thermal characterization of zolpidem hemitartrate hemihydrate (form E) and its<br>decomposition products by laboratory x-ray powder diffraction. Journal of Pharmaceutical Sciences,<br>2010, 99, 871-878.                                       | 3.3  | 13        |
| 77 | Parametric Rietveld refinement for the evaluation of powder diffraction patterns collected as a function of pressure. Journal of Applied Crystallography, 2010, 43, 504-510.                                                                                    | 4.5  | 10        |
| 78 | Single-Crystal-to-Single-Crystal Reactivity: Gray, Rather than Black or White. Crystal Growth and Design, 2010, 10, 2817-2823.                                                                                                                                  | 3.0  | 91        |
| 79 | Electrochemical synthesis and crystal structure of a penta-coordinated silver(II) macrocyclic complex. Inorganica Chimica Acta, 2009, 362, 4009-4012.                                                                                                           | 2.4  | 3         |
| 80 | Synthesis, structural characterization, and anion binding ability of sterically congested adamantane-calix[4]pyrroles and adamantane-calixphyrins. Tetrahedron, 2009, 65, 2051-2058.                                                                            | 1.9  | 20        |
| 81 | Cross-dimerization of nitrosobenzenes in solution and in solid state. Journal of Molecular<br>Structure, 2009, 918, 19-25.                                                                                                                                      | 3.6  | 25        |
| 82 | Structural, Spectroscopic and Thermal Characterisation of bis (dibenzoylmethanato)Cd(II) Adducts with Dimethylsulfoxide and Water. Journal of Chemical Crystallography, 2008, 38, 793-800.                                                                      | 1.1  | 2         |
| 83 | Hydrogen phosphate and dihydrogen phosphate salts of 4-aminoazobenzene. Acta Crystallographica<br>Section C: Crystal Structure Communications, 2007, 63, o61-o64.                                                                                               | 0.4  | 6         |
| 84 | Self-assembly of bis(1,3-diphenylpropane-1,3-dionato-κ2O,O′)bis(thiomorpholine-κN)cobalt(II). Acta<br>Crystallographica Section E: Structure Reports Online, 2006, 62, m283-m285.                                                                               | 0.2  | 1         |
| 85 | N-Benzyl-4-(hydroxyiminomethyl)pyridinium bromide. Acta Crystallographica Section E: Structure<br>Reports Online, 2006, 62, o2423-o2424.                                                                                                                        | 0.2  | 3         |
| 86 | 2-Bromoethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside. Acta Crystallographica Section E: Structure<br>Reports Online, 2005, 61, o2644-o2645.                                                                                                                  | 0.2  | 1         |
| 87 | Solid-State Reaction Mechanisms in Monomerâ^'Dimer Interconversions ofp-Bromonitrosobenzene.<br>Single-Crystal-to-Single-Crystal Photodissociation and Formation of New Non-van der Waals Close<br>Contacts. Journal of Organic Chemistry, 2005, 70, 8461-8467. | 3.2  | 33        |
| 88 | Bis(dimethyl sulfoxide-κO)bis(1-phenylbutane-1,3-dionato-κ2O,O′)nickel(II). Acta Crystallographica Section<br>E: Structure Reports Online, 2004, 60, m367-m369.                                                                                                 | 0.2  | 4         |
| 89 | The first adduct of bis(1,3-diphenyl-1,3-propanedionato)oxovanadium(IV). Acta Crystallographica<br>Section E: Structure Reports Online, 2004, 60, m1920-m1922.                                                                                                  | 0.2  | 4         |
| 90 | Nitrosobenzene Dimerizations as a Model System for Studying Solid-State Reaction Mechanisms.<br>Journal of Organic Chemistry, 2004, 69, 4829-4834.                                                                                                              | 3.2  | 19        |

| #  | Article                                                                                                                                                             | IF    | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 91 | Ewolucja wÄ™gierskiego modelu zarzÄdzania sÄdownictwem i samorzÄdu sÄ™dziowskiego na WÄ™grzec<br>latach 1989‰2019. PrzeglÄd Prawa I Administracji, 0, 119, 171-180. | h w.o | 1         |
| 92 | Mechanochemical halogenation of unsymmetrically substituted azobenzenes. Beilstein Journal of<br>Organic Chemistry, 0, 18, 680-687.                                 | 2.2   | 6         |