Igor Plazl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4907673/publications.pdf

Version: 2024-02-01

331670 361022 1,283 48 21 35 citations h-index g-index papers 49 49 49 1327 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ni-containing CeO2 rods for dry reforming of methane: Activity tests and a multiscale lattice Boltzmann model analysis in two model geometries. Chemical Engineering Journal, 2021, 413, 127498.	12.7	16
2	Development of an electrically responsive hydrogel for programmable <i>in situ</i> ii immobilization within a microfluidic device. Soft Matter, 2021, 17, 6751-6764.	2.7	12
3	Inertial focusing of neutrally buoyant particles in heterogenous suspensions. Journal of Molecular Liquids, 2021, 328, 115410.	4.9	5
4	Time scale analysis & Diaracteristic times in microscale-based bio-chemical processes: Part II – Bioreactors with immobilized cells, and process flowsheet analysis. Chemical Engineering Science, 2021, 236, 116499.	3.8	8
5	A discrete reactive collision scheme for the lattice Boltzmann method. Journal of Molecular Liquids, 2021, 332, 115871.	4.9	2
6	Time scale analysis & Daracteristic times in microscale-based chemical and biochemical processes: Part I $\hat{a} \in$ Concepts and origins. Chemical Engineering Science, 2021, 238, 116502.	3.8	10
7	From calorimetry to thermal risk assessment: γ-Valerolactone production from the hydrogenation of alkyl levulinates. Chemical Engineering Research and Design, 2020, 144, 32-41.	5.6	17
8	Separation and purification of biomacromolecules based on microfluidics. Green Chemistry, 2020, 22, 4391-4410.	9.0	47
9	A lattice Boltzmann study of 2D steady and unsteady flows around a confined cylinder. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	4
10	Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator. Chemical and Biochemical Engineering Quarterly, 2020, 34, 73-78.	0.9	1
11	Process Intensification and Miniaturization of Chemical and Biochemical Processes. Computer Aided Chemical Engineering, 2019, , 1801-1806.	0.5	6
12	Characterization of an enzymatic packed-bed microreactor: Experiments and modeling. Chemical Engineering Journal, 2018, 350, 541-550.	12.7	20
13	Enzymatic packed-bed microreactor: Transport phenomena and kinetics. Journal of Biotechnology, 2018, 280, S14-S15.	3.8	O
14	Theoretical and experimental study of enzyme kinetics in a microreactor system with surface-immobilized biocatalyst. Chemical Engineering Journal, 2017, 313, 374-381.	12.7	40
15	Development of a miniaturized packed bed reactor with low-transaminase immobilized in LentiKats \hat{A}^{\otimes} . Process Biochemistry, 2017, 52, 63-72.	3.7	45
16	Microbioreactors., 2017,, 414-427.		0
17	Modelling Reaction-Diffusion Dynamics in Microsystems. Computer Aided Chemical Engineering, 2016, 38, 1623-1628.	0.5	O
18	Feasibility of Carbon Nanofiber Catalyst Support for the Heterogeneous Fenton Process. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	4

#	Article	IF	Citations
19	Experimental studies and modeling of \hat{l}_{\pm} -amylase aqueous two-phase extraction within a microfluidic device. Microfluidics and Nanofluidics, 2015, 19, 75-83.	2.2	30
20	Microfluidic droplet-based liquid–liquid extraction: online model validation. Lab on A Chip, 2015, 15, 2233-2239.	6.0	26
21	Dechlorination of polychlorinated phenols on bimetallic Pd/Fe catalyst in a magnetically stabilized fluidized bed. Chemical Engineering Journal, 2015, 274, 50-60.	12.7	23
22	Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends in Biotechnology, 2015, 33, 302-314.	9.3	167
23	Evaluation of Diffusion Coefficient Determination using a Microfluidic Device. Chemical and Biochemical Engineering Quarterly, 2014, 28, 215-223.	0.9	35
24	Optimization of a Thermal Lens Microscope for Detection in a Microfluidic Chip. International Journal of Thermophysics, 2014, 35, 2011-2022.	2.1	15
25	Theoretical and experimental study of iron catalyst preparation by chemical vapor deposition of ferrocene in air. Chemical Engineering Journal, 2014, 242, 306-312.	12.7	12
26	Sintering Behavior of Expanded Perlite Thermal Insulation Board: Modeling and Experiments. Industrial & Engineering Chemistry Research, 2013, 52, 10244-10249.	3.7	9
27	Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluidics and Nanofluidics, 2013, 14, 565-574.	2.2	31
28	Microwave Drying of Expanded Perlite Insulation Board. Industrial & Engineering Chemistry Research, 2012, 51, 3314-3321.	3.7	10
29	Ionic liquid-based aqueous two-phase extraction within a microchannel system. Separation and Purification Technology, 2012, 97, 172-178.	7.9	90
30	Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions. Chemical Engineering Journal, 2012, 189-190, 376-382.	12.7	32
31	Continuous steroid biotransformations in microchannel reactors. New Biotechnology, 2012, 29, 227-234.	4.4	20
32	Parallel flow of immiscible liquids in a microreactor: modeling and experimental study. Microfluidics and Nanofluidics, 2012, 12, 307-316.	2.2	33
33	l-Malic acid production within a microreactor with surface immobilised fumarase. Microfluidics and Nanofluidics, 2011, 10, 627-635.	2.2	37
34	Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catalysis Today, 2010, 157, 315-320.	4.4	22
35	Assessment of Physical Leaching Processes of Some Elements in Soil upon Ingestion by Continuous Leaching and Modeling. Environmental Science & Elements in Soil upon Ingestion by Continuous	10.0	6
36	Modeling and finite difference numerical analysis of reaction-diffusion dynamics in a microreactor. Acta Chimica Slovenica, 2010, 57, 100-9.	0.6	9

#	Article	IF	CITATIONS
37	Influence of carrier type on nitrification in the moving-bed biofilm process. Water Science and Technology, 2009, 59, 875-882.	2.5	47
38	Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochemistry, 2009, 44, 1115-1121.	3.7	73
39	Modelling of laccase-catalyzed l-DOPA oxidation in a microreactor. Chemical Engineering Journal, 2009, 149, 383-388.	12.7	45
40	Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n–heptane two-phase system at the microreactor scale. Lab on A Chip, 2009, 9, 3385.	6.0	64
41	The finite differences method for solving systems on irregular shapes. Computers and Chemical Engineering, 2008, 32, 2891-2896.	3.8	8
42	Laminar to Turbulent Transition and Heat Transfer in a Microreactor: Mathematical Modeling and Experiments. Industrial & E	3.7	22
43	Batch and continuous transformation of progesterone by Rhizopus nigrican spellets in the presence of \hat{l}^2 -cyclodextrin. Biocatalysis and Biotransformation, 2007, 25, 16-23.	2.0	20
44	Steroid extraction in a microchannel system—mathematical modelling and experiments. Lab on A Chip, 2007, 7, 883-889.	6.0	113
45	Kinetics of colloidal alkylketene dimer particles deposition on pulp fibers. Colloid and Polymer Science, 2007, 285, 907-914.	2.1	5
46	Modeling of temperature distributions in canned tomato based dip during industrial pasteurization. Journal of Food Engineering, 2006, 75, 400-406.	5.2	20
47	The influence of \hat{l}^2 -cyclodextrin on the kinetics of progesterone transformation byRhizopus nigricans. Biocatalysis and Biotransformation, 2005, 23, 299-305.	2.0	21
48	Thermal Treatment of New Inorganic Thermal Insulation Board Based on Expanded Perlite. Advanced Materials Research, 0, 560-561, 249-253.	0.3	1