

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4907453/publications.pdf Version: 2024-02-01

Lui He

#	Article	IF	CITATIONS
1	A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes. Frontiers in Neuroscience, 2018, 12, 491.	2.8	114
2	Enhancing Diagnosis of Autism With Optimized Machine Learning Models and Personal Characteristic Data. Frontiers in Computational Neuroscience, 2019, 13, 9.	2.1	74
3	Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework. NeuroImage: Clinical, 2018, 18, 290-297.	2.7	60
4	Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?. Brain Structure and Function, 2018, 223, 3665-3680.	2.3	45
5	Optimizing the Magnetization-Prepared Rapid Gradient-Echo (MP-RAGE) Sequence. PLoS ONE, 2014, 9, e96899.	2.5	42
6	Prenatal opioid exposure is associated with smaller brain volumes in multiple regions. Pediatric Research, 2021, 90, 397-402.	2.3	41
7	Early cortical maturation predicts neurodevelopment in very preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 460-465.	2.8	39
8	Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data. American Journal of Roentgenology, 2019, 213, 592-601.	2.2	37
9	Automatically Quantified Diffuse Excessive High Signal Intensity on MRI Predicts Cognitive Development in Preterm Infants. Pediatric Neurology, 2013, 49, 424-430.	2.1	35
10	Reliability and Repeatability of Quantitative Tractography Methods for Mapping Structural White Matter Connectivity in Preterm and Term Infants at Term-Equivalent Age. PLoS ONE, 2014, 9, e85807.	2.5	32
11	Brain functional network connectivity development in very preterm infants: The first six months. Early Human Development, 2016, 98, 29-35.	1.8	32
12	A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection. Radiology: Artificial Intelligence, 2019, 2, e190012.	5.8	29
13	Automated detection of white matter signal abnormality using T2 relaxometry: Application to brain segmentation on term MRI in very preterm infants. NeuroImage, 2013, 64, 328-340.	4.2	27
14	Aberrant Executive and Frontoparietal Functional Connectivity in Very Preterm Infants With Diffuse White Matter Abnormalities. Pediatric Neurology, 2015, 53, 330-337.	2.1	27
15	Atlas-Guided Quantification of White Matter Signal Abnormalities on Term-Equivalent Age MRI in Very Preterm Infants: Findings Predict Language and Cognitive Development at Two Years of Age. PLoS ONE, 2013, 8, e85475.	2.5	26
16	A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. Scientific Reports, 2020, 10, 15072.	3.3	26
17	Perinatal Risk and Protective Factors in the Development of Diffuse White Matter Abnormality on Term-Equivalent Age Magnetic Resonance Imaging in Infants Born Very Preterm. Journal of Pediatrics, 2021, 233, 58-65.e3.	1.8	23
18	Retinopathy of Prematurity and Bronchopulmonary Dysplasia are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants. Scientific Reports, 2019, 9, 19679.	3.3	18

ίιι Ηε

#	Article	IF	CITATIONS
19	Automated brain morphometric biomarkers from MRI at term predict motor development in very preterm infants. NeuroImage: Clinical, 2020, 28, 102475.	2.7	16
20	Objectively Diagnosed Diffuse White Matter Abnormality at Term Is an Independent Predictor of Cognitive and Language Outcomes in Infants Born Very Preterm. Journal of Pediatrics, 2020, 220, 56-63.	1.8	15
21	Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants. Frontiers in Neuroscience, 2021, 15, 753033.	2.8	14
22	Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks. Frontiers in Neuroscience, 2019, 13, 610.	2.8	13
23	Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks. Frontiers in Neuroscience, 2020, 14, 858.	2.8	13
24	Novel diffuse white matter abnormality biomarker at term-equivalent age enhances prediction of long-term motor development in very preterm children. Scientific Reports, 2020, 10, 15920.	3.3	12
25	DeepLiverNet: a deep transfer learning model for classifying liver stiffness using clinical and T2-weighted magnetic resonance imaging data in children and young adults. Pediatric Radiology, 2021, 51, 392-402.	2.0	10
26	Diffusion MRI Microstructural Abnormalities at Term-Equivalent Age Are Associated with Neurodevelopmental Outcomes at 3 Years of Age in Very Preterm Infants. American Journal of Neuroradiology, 2021, 42, 1535-1542.	2.4	9
27	Antecedents of Objectively Diagnosed Diffuse White Matter Abnormality in Very Preterm Infants. Pediatric Neurology, 2020, 106, 56-62.	2.1	9
28	Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks. Diagnostics, 2022, 12, 816.	2.6	9
29	Neonatal Functional and Structural Connectivity Are Associated with Cerebral Palsy at Two Years of Age. American Journal of Perinatology, 2020, 37, 137-145.	1.4	8
30	ConCeptCNN: A novel multiâ€filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome. Medical Physics, 2022, 49, 3171-3184.	3.0	8
31	Current and emerging artificial intelligence applications for pediatric abdominal imaging. Pediatric Radiology, 2021, , 1.	2.0	7
32	Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants. Radiology: Artificial Intelligence, 2021, 3, e200166.	5.8	7
33	Optimization of magnetization-prepared rapid gradient echo (MP-RAGE) sequence for neonatal brain MRI. Pediatric Radiology, 2018, 48, 1139-1151.	2.0	6
34	Diffuse white matter abnormality in very preterm infants at term reflects reduced brain network efficiency. NeuroImage: Clinical, 2021, 31, 102739.	2.7	6
35	Transformer-Based High-Frequency Oscillation Signal Detection on Magnetoencephalography From Epileptic Patients. Frontiers in Molecular Biosciences, 2022, 9, 822810.	3.5	4
36	Improving structural brain images acquired with the 3D FLASH sequence. Magnetic Resonance Imaging, 2017, 38, 224-232.	1.8	1