
Silke Langenheder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4907147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments. Limnology and Oceanography Letters, 2023, 8, 19-29.	3.9	21
2	Integrating multiple dimensions of ecological stability into a vulnerability framework. Journal of Ecology, 2022, 110, 374-386.	4.0	7
3	Freshwater salinisation: a research agenda for a saltier world. Trends in Ecology and Evolution, 2022, 37, 440-453.	8.7	93
4	Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	49
5	Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes. Ecology, 2022, 103, e3683.	3.2	17
6	Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies. Ecology, 2021, 102, e03283.	3.2	7
7	Warming mediates the resistance of aquatic bacteria to invasion during community coalescence. Molecular Ecology, 2021, 30, 1345-1356.	3.9	9
8	Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiology and Molecular Biology Reviews, 2021, 85, .	6.6	87
9	<scp>SITES AquaNet</scp> : An open infrastructure for mesocosm experiments with high frequency sensor monitoring across lakes. Limnology and Oceanography: Methods, 2021, 19, 385-400.	2.0	7
10	Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances. Scientific Reports, 2020, 10, 11333.	3.3	6
11	River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. FEMS Microbiology Ecology, 2020, 96, .	2.7	5
12	Streamlined and Abundant Bacterioplankton Thrive in Functional Cohorts. MSystems, 2020, 5, .	3.8	8
13	Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities. Environmental Science & Technology, 2020, 54, 14380-14392.	10.0	37
14	Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Scientific Reports, 2020, 10, 2455.	3.3	64
15	Thickness determines microbial community structure and function in nitrifying biofilms via deterministic assembly. Scientific Reports, 2019, 9, 5110.	3.3	74
16	Factors influencing aquatic and terrestrial bacterial community assembly. Environmental Microbiology Reports, 2019, 11, 306-315.	2.4	152
17	Dispersal timing determines the importance of priority effects in bacterial communities. ISME Journal, 2018, 12, 644-646.	9.8	44
18	Decomposing multiple dimensions of stability in global change experiments. Ecology Letters, 2018, 21, 21-30.	6.4	167

SILKE LANGENHEDER

#	Article	IF	CITATIONS
19	Dispersal Modifies the Diversity and Composition of Active Bacterial Communities in Response to a Salinity Disturbance. Frontiers in Microbiology, 2018, 9, 2188.	3.5	45
20	High abundances of the nuisance raphidophyte Gonyostomum semen in brown water lakes are associated with high concentrations of iron. Scientific Reports, 2018, 8, 13463.	3.3	18
21	Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environmental Microbiology Reports, 2018, 10, 493-500.	2.4	18
22	Increased water colour affects freshwater plankton communities in a mesocosm study. Aquatic Microbial Ecology, 2018, 81, 1-17.	1.8	27
23	Bacterial metacommunity organization in a highly-connected aquatic system. FEMS Microbiology Ecology, 2017, 93, fiw225.	2.7	41
24	Dispersal timing and drought history influence the response of bacterioplankton to drying–rewetting stress. ISME Journal, 2017, 11, 1764-1776.	9.8	34
25	Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environmental Microbiology, 2017, 19, 251-260.	3.8	19
26	Functional and Compositional Stability of Bacterial Metacommunities in Response to Salinity Changes. Frontiers in Microbiology, 2017, 8, 948.	3.5	37
27	The legacy of the past: effects of historical processes on microbial metacommunities. Aquatic Microbial Ecology, 2017, 79, 13-19.	1.8	49
28	Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. Environmental Microbiology Reports, 2016, 8, 479-485.	2.4	10
29	Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality. Ecology, 2016, 97, 2716-2728.	3.2	64
30	Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities. PLoS ONE, 2016, 11, e0155239.	2.5	28
31	Combined effects of zooplankton grazing and dispersal on the diversity and assembly mechanisms of bacterial metacommunities. Environmental Microbiology, 2015, 17, 2275-2287.	3.8	47
32	The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology, 2014, 95, 1134-1140.	3.2	67
33	The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiology Ecology, 2014, 87, 102-112.	2.7	166
34	Can marine bacteria be recruited from freshwater sources and the air?. ISME Journal, 2014, 8, 2423-2430.	9.8	55
35	Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME Journal, 2013, 7, 61-71.	9.8	91
36	Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal, 2013, 7, 937-948.	9.8	330

SILKE LANGENHEDER

#	Article	IF	CITATIONS
37	Weak seasonality and synchrony among bacterial communities in small pools. Aquatic Microbial Ecology, 2013, 69, 223-229.	1.8	3
38	Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology, 2012, 3, 417.	3.5	1,131
39	Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecology, 2012, 12, 14.	3.0	34
40	Importance of space and the local environment for linking local and regional abundances of microbes. Aquatic Microbial Ecology, 2012, 67, 35-45.	1.8	8
41	Unraveling assembly of stream biofilm communities. ISME Journal, 2012, 6, 1459-1468.	9.8	242
42	Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. ISME Journal, 2012, 6, 1107-1114.	9.8	127
43	Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships. ISME Journal, 2012, 6, 1127-1136.	9.8	105
44	Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports, 2012, 4, 1-9.	2.4	434
45	Effects of Disturbance Intensity and Frequency on Bacterial Community Composition and Function. PLoS ONE, 2012, 7, e36959.	2.5	114
46	Function-specific response to depletion of microbial diversity. ISME Journal, 2011, 5, 351-361.	9.8	183
47	Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME Journal, 2011, 5, 1086-1094.	9.8	267
48	Regional invariance among microbial communities. Ecology Letters, 2010, 13, 118-127.	6.4	129
49	Ubiquity of <i>Polynucleobacter necessarius</i> ssp. <i>asymbioticus</i> in lentic freshwater habitats of a heterogenous 2000 km ² area. Environmental Microbiology, 2010, 12, 658-669.	3.8	115
50	Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity. PLoS ONE, 2010, 5, e10834.	2.5	149
51	Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies. Soil Biology and Biochemistry, 2009, 41, 2292-2298.	8.8	130
52	Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environmental Microbiology, 2008, 10, 2245-2256.	3.8	71
53	DOES ECOSYSTEM SIZE DETERMINE AQUATIC BACTERIAL RICHNESS? COMMENT. Ecology, 2007, 88, 252-253.	3.2	16
54	THE ROLE OF ENVIRONMENTAL AND SPATIAL FACTORS FOR THE COMPOSITION OF AQUATIC BACTERIAL COMMUNITIES. Ecology, 2007, 88, 2154-2161.	3.2	138

SILKE LANGENHEDER

#	Article	IF	CITATIONS
55	Influence of dissolved organic matter source on lake bacterioplankton structure and function – implications for seasonal dynamics of community composition. FEMS Microbiology Ecology, 2006, 56, 406-417.	2.7	115
56	Changes in bacterial community composition along a solar radiation gradient in humic waters. Aquatic Sciences, 2006, 68, 415-424.	1.5	19
57	Structure and Function of Bacterial Communities Emerging from Different Sources under Identical Conditions. Applied and Environmental Microbiology, 2006, 72, 212-220.	3.1	155
58	Weak coupling between community composition and functioning of aquatic bacteria. Limnology and Oceanography, 2005, 50, 957-967.	3.1	170
59	Growth dynamics within bacterial communities in riverine and estuarine batch cultures. Aquatic Microbial Ecology, 2004, 37, 137-148.	1.8	16
60	Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiology Ecology, 2003, 45, 189-202.	2.7	110
61	Heterotrophic Bacterial Growth Efficiency and Community Structure at Different Natural Organic Carbon Concentrations. Applied and Environmental Microbiology, 2003, 69, 3701-3709.	3.1	261
62	Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnology and Oceanography, 2001, 46, 121-134.	3.1	146