Fei Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4907005/publications.pdf

Version: 2024-02-01

759055 752573 21 541 12 20 citations h-index g-index papers 21 21 21 984 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	6.6	107
2	Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). Journal of Thermoplastic Composite Materials, 2018, 31, 1090-1101.	2.6	61
3	Cations controlled growth of \hat{l}^2 -MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy, 2018, 48, 301-311.	8.2	56
4	Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioactive Materials, 2019, 4, 142-150.	8 . 6	53
5	Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition. ACS Applied Materials & Company: Interfaces, 2017, 9, 20922-20927.	4.0	51
6	Characteristic Work Function Variations of Graphene Line Defects. ACS Applied Materials & Company (Interfaces, 2016, 8, 18360-18366.	4.0	43
7	Virus Isoelectric Point Determination Using Single-Particle Chemical Force Microscopy. Langmuir, 2020, 36, 370-378.	1.6	36
8	Accurate Characterization of Mixed Plastic Waste Using Machine Learning and Fast Infrared Spectroscopy. ACS Sustainable Chemistry and Engineering, 2021, 9, 14143-14151.	3.2	23
9	Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays. International Journal of Nanomedicine, 2014, 9, 5177.	3.3	18
10	Energy-driven surface evolution in beta-MnO2 structures. Nano Research, 2018, 11, 206-215.	5.8	15
11	Preformed Seeds Modulate Native Insulin Aggregation Kinetics. Journal of Physical Chemistry B, 2015, 119, 15089-15099.	1.2	13
12	An <i>in-situ</i> photocrosslinking microfluidic technique to generate non-spherical, cytocompatible, degradable, monodisperse alginate microgels for chondrocyte encapsulation. Biomicrofluidics, 2018, 12, 014106.	1.2	13
13	Evidence of Splitting 1,2,3â€√riazole into an Alkyne and Azide by Low Mechanical Force in the Presence of Other Covalent Bonds. Chemistry - A European Journal, 2016, 22, 9760-9767.	1.7	11
14	Selective Growth of Two-Dimensional Heterostructures of Gallium Selenide on Monolayer Graphene and the Thickness Dependent <i>p-</i> and <i>n-</i> Type Nature. ACS Applied Nano Materials, 2018, 1, 3293-3302.	2.4	9
15	Localized Mechanical Stress Induced Ionic Redistribution in a Layered LiCoO ₂ Cathode. ACS Applied Materials & Diction 1:00 (2015) ACS Applied Materials & Diction 2:00 (2015) ACS Applied Mater	4.0	7
16	<i>In situ</i> visualization of the superior nanomechanical flexibility of individual hydroxyapatite nanobelts. CrystEngComm, 2018, 20, 1031-1036.	1.3	7
17	The Effect of Adsorbed Volatile Organic Compounds on an Ultrathin Water Film Measurement. Applied Sciences (Switzerland), 2020, 10, 5981.	1.3	7
18	Modification of a single-molecule AFM probe with highly defined surface functionality. Beilstein Journal of Nanotechnology, 2014, 5, 2122-2128.	1.5	5

FEI LONG

#	Article	IF	CITATIONS
19	Is there value in chemical modification of fish scale surfaces?. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
20	Narrowing Plasmon Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth of Au Nanodome Lattices. ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewick (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Materials & Discrete Resonance Linewidth (Nanodome Lattices). ACS Applied Material	4.0	1
21	In situ visualization of superior nanomechanical flexibility of individual ydroxyapatite nanobelts. Microscopy and Microanalysis, 2021, 27, 1780-1781.	0.2	O