
Steven J Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain, 2022, 145, 700-712.	3.7	16
2	Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings. Alzheimer's and Dementia, 2022, 18, 2218-2233.	0.4	24
3	Cerebrospinal fluid Alzheimer disease biomarkers for assessing cognitive and neuropsychiatric symptoms: Expanding the â€~toolkit' in the psychiatrist's diagnostic armamentarium. Australian and New Zealand Journal of Psychiatry, 2022, 56, 865-866.	1.3	1
4	Insulin resistance, cognition and Alzheimer's disease biomarkers: Evidence that CSF Aβ42 moderates the association between insulin resistance and increased CSF tau levels. Neurobiology of Aging, 2022, 114, 38-48.	1.5	5
5	Cerebrospinal Fluid Neurofilament Light Predicts Risk of Dementia Onset in Cognitively Healthy Individuals and Rate of Cognitive Decline in Mild Cognitive Impairment: A Prospective Longitudinal Study. Biomedicines, 2022, 10, 1045.	1.4	1
6	Amyloid-β (Aβ)-Related Cerebral Amyloid Angiopathy Causing Lobar Hemorrhage Decades After Childhood Neurosurgery. Stroke, 2022, 53, .	1.0	6
7	Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurology, The, 2021, 20, 235-246.	4.9	151
8	The Three Glycotypes in the London Classification System of Sporadic Creutzfeldt-Jakob Disease Differ in Disease Duration. Molecular Neurobiology, 2021, 58, 3983-3991.	1.9	0
9	Core Alzheimer's disease cerebrospinal fluid biomarker assays are not affected by aspiration or gravity drip extraction methods. Alzheimer's Research and Therapy, 2021, 13, 79.	3.0	0
10	Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. Journal of Alzheimer's Disease Reports, 2021, 5, 443-468.	1.2	59
11	Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Frontiers in Immunology, 2021, 12, 639008.	2.2	3
12	Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020. Communicable Diseases Intelligence (2018), 2021, 45, .	0.3	1
13	Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon, 2021, 7, e08644.	1.4	2
14	A pilot study of the utility of cerebrospinal fluid neurofilament light chain in differentiating neurodegenerative from psychiatric disorders: A â€~C-reactive protein' for psychiatrists and neurologists?. Australian and New Zealand Journal of Psychiatry, 2020, 54, 57-67.	1.3	40
15	Cerebrospinal fluid neurofilament light chain is elevated in Niemann–Pick type C compared to psychiatric disorders and healthy controls and may be a marker of treatment response. Australian and New Zealand Journal of Psychiatry, 2020, 54, 648-649.	1.3	18
16	Intra-cerebral haemorrhage but not neurodegenerative disease appears over-represented in deaths of Australian cadaveric pituitary hormone recipients. Journal of Clinical Neuroscience, 2020, 81, 78-82.	0.8	2
17	PrPSc Oligomerization Appears Dynamic, Quickly Engendering Inherent M1000 Acute Synaptotoxicity. Biophysical Journal, 2020, 119, 128-141.	0.2	1
18	Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurology, The, 2020, 19, 840-848.	4.9	42

#	Article	IF	CITATIONS
19	Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging. Alzheimer's Research and Therapy, 2020, 12, 36.	3.0	39
20	The cellular prion protein beyond prion diseases. Swiss Medical Weekly, 2020, 150, w20222.	0.8	13
21	Decreased cerebrospinal fluid neuronal pentraxin receptor is associated with PET-Aβ load and cerebrospinal fluid Aβ in a pilot study of Alzheimer's disease. Neuroscience Letters, 2020, 731, 135078.	1.0	6
22	Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology, 2019, 93, e125-e134.	1.5	73
23	ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology, 2019, 92, e1567-e1579.	1.5	73
24	"To Treat or not To Treatâ€: Informing the Decision for Disease-Modifying Therapy in Late-Stage Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 1321-1323.	1.2	5
25	Early existence and biochemical evolution characterise acutely synaptotoxic PrPSc. PLoS Pathogens, 2019, 15, e1007712.	2.1	13
26	Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer's Disease. Neurotherapeutics, 2019, 16, 192-202.	2.1	69
27	Ethical Issues in the Treatment of Late-Stage Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 1311-1316.	1.2	10
28	Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight, 2019, 5, .	2.3	21
29	Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2018. Communicable Diseases Intelligence (2018), 2019, 43, .	0.3	7
30	Creutzfeldt–Jakob disease surveillance in Australia: update to December 2017. Communicable Diseases Intelligence (2018), 2019, 43, .	0.3	0
31	Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cellular and Molecular Life Sciences, 2018, 75, 3231-3249.	2.4	20
32	Acute Neurotoxicity Models of Prion Disease. ACS Chemical Neuroscience, 2018, 9, 431-445.	1.7	8
33	CSF Tau supplements 14-3-3 protein detection for sporadic Creutzfeldt–Jakob disease diagnosis while transitioning to next generation diagnostics. Journal of Clinical Neuroscience, 2018, 50, 292-293.	0.8	9
34	latrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study. Acta Neuropathologica Communications, 2018, 6, 5.	2.4	79
35	Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species. PLoS Pathogens, 2018, 14, e1007214.	2.1	11
36	Creutzfeldt-Jakob disease surveillance in Australia: update to December 2016. Communicable Diseases Intelligence (2018), 2018, 42, .	0.3	0

#	Article	IF	CITATIONS
37	In vivo prion models and the disconnection between transmissibility and neurotoxicity. Ageing Research Reviews, 2017, 36, 156-164.	5.0	7
38	Oxidation of Iron under Physiologically Relevant Conditions in Biological Fluids from Healthy and Alzheimer's Disease Subjects. ACS Chemical Neuroscience, 2017, 8, 731-736.	1.7	3
39	Concordance Between Cerebrospinal Fluid Biomarkers with Alzheimer's Disease Pathology Between Three Independent Assay Platforms. Journal of Alzheimer's Disease, 2017, 61, 169-183.	1.2	21
40	Prion Diseases. Advances in Neurobiology, 2017, 15, 335-364.	1.3	9
41	Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochemistry and Biophysics, 2017, 75, 3-13.	0.9	11
42	A 2-Substituted 8-Hydroxyquinoline Stimulates Neural Stem Cell Proliferation by Modulating ROS Signalling. Cell Biochemistry and Biophysics, 2016, 74, 297-306.	0.9	14
43	A Phase IIa Randomized Control Trial ofÂVEL015 (Sodium Selenate) inÂMild-Moderate Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 223-232.	1.2	53
44	Cerebrospinal fluid realâ€ŧime quakingâ€induced conversion is a robust and reliable test for sporadic creutzfeldt–jakob disease: An international study. Annals of Neurology, 2016, 80, 160-165.	2.8	107
45	The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nature Protocols, 2016, 11, 2233-2242.	5.5	107
46	LGI1 antibody encephalopathy overlapping with sporadic Creutzfeldt-Jakob disease. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e248.	3.1	8
47	Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine, 2016, 8, 322ra9.	5.8	289
48	Prion protein "gamma-cleavage― characterizing a novel endoproteolytic processing event. Cellular and Molecular Life Sciences, 2016, 73, 667-683.	2.4	39
49	Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease. Molecular Neurobiology, 2016, 53, 1896-1904.	1.9	161
50	Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic. Molecular Neurobiology, 2016, 53, 2189-2199.	1.9	80
51	Endoproteolytic cleavage as a molecular switch regulating and diversifying prion protein function. Neural Regeneration Research, 2016, 11, 238.	1.6	12
52	Creutzfeldt-Jakob disease surveillance in Australia: update to December 2014. Communicable Diseases Intelligence, 2016, 40, E207-15.	0.5	1
53	Alzheimer's Disease Normative Cerebrospinal Fluid Biomarkers Validated inÂPET Amyloid-β Characterized Subjects from the Australian Imaging, Biomarkers andÂLifestyle (AIBL) study. Journal of Alzheimer's Disease, 2015, 48, 175-187.	1.2	47
54	Alzheimer's disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology. Alzheimer's Research and Therapy, 2015, 7, 71.	3.0	14

#	Article	IF	CITATIONS
55	A Genome Wide Association Study Links Glutamate Receptor Pathway to Sporadic Creutzfeldt-Jakob Disease Risk. PLoS ONE, 2015, 10, e0123654.	1.1	28
56	The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses. PLoS ONE, 2015, 10, e0134680.	1.1	18
57	Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology, 2015, 25, 745-755.	1.3	12
58	The prion protein regulates beta-amyloid-mediated self-renewal of neural stem cells in vitro. Stem Cell Research and Therapy, 2015, 6, 60.	2.4	13
59	Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease. Antioxidants, 2014, 3, 288-308.	2.2	9
60	C-terminal peptides modelling constitutive PrPC processing demonstrate ameliorated toxicity predisposition consequent to $\hat{l}\pm$ -cleavage. Biochemical Journal, 2014, 459, 103-115.	1.7	11
61	Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding. Biophysical Journal, 2014, 107, 2313-2324.	0.2	27
62	Ascertainment Bias Causes False Signal of Anticipation in Genetic Prion Disease. American Journal of Human Genetics, 2014, 95, 371-382.	2.6	40
63	P3-077: CEREBROSPINAL FLUID BIOMARKERS ARE NOT INFLUENCED BY GRAVITY DRIP OR ASPIRATION EXTRACTION METHODOLOGY. , 2014, 10, P654-P655.		0
64	CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimer's and Dementia, 2013, 9, 251-261.	0.4	344
65	Immunotherapeutic approaches in prion disease: progress, challenges and potential directions. Therapeutic Delivery, 2013, 4, 615-628.	1.2	4
66	Characterising the uncommon corticobasal syndrome presentation of sporadic Creutzfeldt-Jakob disease. Parkinsonism and Related Disorders, 2013, 19, 81-85.	1.1	27
67	Unusual Clinical and Molecular-Pathological Profile of Gerstmann-StrÃ ¤ ssler-Scheinker Disease Associated With a Novel <i>PRNP</i> Mutation (V176G). JAMA Neurology, 2013, 70, 1180.	4.5	19
68	Cytosolic caspases mediate mislocalised SOD2 depletion in an <i>in vitro</i> model of chronic prion infection. DMM Disease Models and Mechanisms, 2013, 6, 952-63.	1.2	13
69	Intensity of human prion disease surveillance predicts observed disease incidence. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1372-1377.	0.9	49
70	Updated Creutzfeldt–Jakob disease infection control guidelines: sifting facts from fiction. Medical Journal of Australia, 2013, 198, 245-246.	0.8	2
71	Updated Creutzfeldt–Jakob disease infection control guidelines: sifting facts from fiction. Medical Journal of Australia, 2013, 199, 535-536.	0.8	1
72	Development of a neuroprotective antioxidant by a mix-and-match strategy. Oxidants and Antioxidants in Medical Science, 2013, 2, 255.	0.2	2

#	Article	IF	CITATIONS
73	The Prion Protein Preference of Sporadic Creutzfeldt-Jakob Disease Subtypes. Journal of Biological Chemistry, 2012, 287, 36465-36472.	1.6	9
74	Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Molecular Neurodegeneration, 2012, 7, 18.	4.4	15
75	Microwave Synthesis of Prion Protein Fragments up to 111 Amino Acids in Length Generates Biologically Active Peptides. International Journal of Peptide Research and Therapeutics, 2012, 18, 21-29.	0.9	11
76	latrogenic Creutzfeldt–Jakob disease in Australia: time to amend infection control measures for pituitary hormone recipients?. Medical Journal of Australia, 2011, 194, 214-215.	0.8	0
77	Acute exposure to prion infection induces transient oxidative stress progressing to be cumulatively deleterious with chronic propagation in vitro. Free Radical Biology and Medicine, 2011, 51, 594-608.	1.3	31
78	Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. Journal of Neurochemistry, 2010, 114, 440-451.	2.1	37
79	Copper, endoproteolytic processing of the prion protein and cell signalling. Frontiers in Bioscience - Landmark, 2010, 15, 1086.	3.0	23
80	Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain. Journal of Biological Chemistry, 2010, 285, 32282-32292.	1.6	31
81	No evidence for prion protein gene locus multiplication in Creutzfeldt-Jakob disease. Neuroscience Letters, 2010, 472, 16-18.	1.0	5
82	Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. Journal of Cell Science, 2009, 122, 1518-1528.	1.2	39
83	PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Research, 2009, 19, 1062-1078.	5.7	36
84	The effects of prion protein expression on metal metabolism. Molecular and Cellular Neurosciences, 2009, 41, 135-147.	1.0	45
85	Therapeutic interventions ameliorating prion disease. Expert Review of Anti-Infective Therapy, 2009, 7, 83-105.	2.0	15
86	Increased Proportions of C1 Truncated Prion Protein Protect Against Cellular M1000 Prion Infection. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1125-1135.	0.9	46
87	A manganese-superoxide dismutase/catalase mimetic extends survival in a mouse model of human prion disease. Free Radical Biology and Medicine, 2008, 45, 184-192.	1.3	54
88	Mouse-adapted sporadic human Creutzfeldt–Jakob disease prions propagate in cell culture. International Journal of Biochemistry and Cell Biology, 2008, 40, 2793-2801.	1.2	59
89	Correlative studies support lipid peroxidation is linked to PrPres propagation as an early primary pathogenic event in prion disease. Brain Research Bulletin, 2006, 68, 346-354.	1.4	66
90	Genetic prion disease: the EUROCJD experience. Human Genetics, 2005, 118, 166-174.	1.8	391

#	Article	IF	CITATIONS
91	Transmissible spongiform encephalopathies. Lancet, The, 2004, 363, 51-61.	6.3	250
92	Human Prion Diseases: Cause, Clinical and Diagnostic Aspects. , 2004, 11, 72-97.		17
93	Creutzfeldt-Jakob disease cluster in an Australian rural city. Annals of Neurology, 2002, 52, 115-118.	2.8	23
94	Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Annals of Neurology, 2002, 52, 503-506.	2.8	160
95	The Hydrophobic Core Sequence Modulates the Neurotoxic and Secondary Structure Properties of the Prion Peptide 106-126. Journal of Neurochemistry, 2002, 73, 1557-1565.	2.1	152
96	Copper and Zinc Binding Modulates the Aggregation and Neurotoxic Properties of the Prion Peptide PrP106â~126. Biochemistry, 2001, 40, 8073-8084.	1.2	264
97	Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126. Journal of Neuroscience Research, 2001, 65, 565-572.	1.3	47
98	Title is missing!. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	0
99	The synthesis and spectroscopic analysis of the neurotoxic prion peptide 106–126: Comparative use of manual Boc and Fmoc chemistry. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	10
100	Familial Prion Disease Mutation Alters the Secondary Structure of Recombinant Mouse Prion Protein:Â Implications for the Mechanism of Prion Formationâ€. Biochemistry, 1999, 38, 3280-3284.	1.2	35
101	Prion Protein-Deficient Neurons Reveal Lower Glutathione Reductase Activity and Increased Susceptibility to Hydrogen Peroxide Toxicity. American Journal of Pathology, 1999, 155, 1723-1730.	1.9	182
102	latrogenic and zoonotic Creutzfeldt–Jakob disease: the Australian perspective. Medical Journal of Australia, 1996, 164, 598-602.	0.8	19