Giles E D Oldroyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906980/publications.pdf

Version: 2024-02-01

8181 18647 22,721 121 76 119 citations h-index g-index papers 171 171 171 13821 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Symbiotic regulation: How plants seek salvation in starvation. Current Biology, 2022, 32, R46-R48.	3.9	4
2	Engineered plant control of associative nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117465119.	7.1	32
3	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	12.6	90
4	A mycorrhiza-associated receptor-like kinase with an ancient origin in the green lineage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
5	Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science, 2021, 374, 629-632.	12.6	33
6	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
7	The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585, 569-573.	27.8	208
8	A plant's diet, surviving in a variable nutrient environment. Science, 2020, 368, .	12.6	241
9	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	9.3	150
10	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 2020, 11, 2114.	12.8	101
11	Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nature Communications, 2019, 10, 3430.	12.8	93
12	A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10, 2848.	12.8	72
13	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	12.8	129
14	Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in <i>Lotus japonicus</i> . Plant Physiology, 2019, 181, 804-816.	4.8	28
15	NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Current Biology, 2019, 29, 3657-3668.e5.	3.9	177
16	NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. Plant Physiology, 2019, 179, 1704-1722.	4.8	106
17	Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. Plant Biotechnology Journal, 2019, 17, 2234-2245.	8.3	28
18	Genetic strategies for improving crop yields. Nature, 2019, 575, 109-118.	27.8	799

#	Article	IF	CITATIONS
19	Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in <i>Medicago truncatula</i> Molecular Plant-Microbe Interactions, 2018, 31, 568-575.	2.6	9
20	Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. Current Biology, 2018, 28, 3562-3577.e6.	3.9	41
21	<i>MtNODULE ROOT1</i> and <i>MtNODULE ROOT2</i> Are Essential for Indeterminate Nodule Identity. Plant Physiology, 2018, 178, 295-316.	4.8	40
22	Giles Oldroyd. Current Biology, 2018, 28, R856-R857.	3.9	0
23	Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356, 1175-1178.	12.6	503
24	MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. Plant Physiology, 2017, 174, 326-338.	4.8	56
25	Plant signalling in symbiosis and immunity. Nature, 2017, 543, 328-336.	27.8	576
26	Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology, 2017, 27, R952-R963.	3.9	176
27	Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8118-E8127.	7.1	143
28	Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science, 2016, 352, 1102-1105.	12.6	230
29	The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiology, 2016, 171, pp.00230.2016.	4.8	48
30	Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 2016, 82, 3698-3710.	3.1	443
31	A <i>Medicago truncatula </i> Cystathionine- \hat{l}^2 -Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. Plant Physiology, 2016, 170, 2204-2217.	4.8	55
32	Bacterialâ€induced calcium oscillations are common to nitrogenâ€fixing associations of nodulating legumes and nonâ€legumes. New Phytologist, 2015, 207, 551-558.	7.3	89
33	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
34	Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Scientific Reports, 2015, 5, 17394.	3.3	136
35	The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the <i>Medicago truncatula</i> Root. Plant Cell, 2015, 27, 3410-3424.	6.6	178
36	Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice. Plant Cell, 2015, 27, 823-838.	6.6	188

#	Article	lF	Citations
37	Tracing the evolutionary path to nitrogen-fixing crops. Current Opinion in Plant Biology, 2015, 26, 95-99.	7.1	44
38	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	7.1	292
39	The receptor kinase <i><scp>CERK</scp>1</i> has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81, 258-267.	5.7	232
40	The Root Hair "Infectome―of <i>Medicago truncatula</i> Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 2014, 26, 4680-4701.	6.6	313
41	Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex Â. Plant Physiology, 2014, 166, 2077-2090.	4.8	81
42	A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 2014, 24, 130-133.	12.0	168
43	Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 2014, 26, 19-24.	6.6	259
44	Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 2014, 65, 1939-1946.	4.8	160
45	Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling Â. Plant Cell, 2014, 25, 5053-5066.	6.6	124
46	A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and <i>Medicago truncatula </i> \hat{A} \hat{A} \hat{A} . Plant Cell, 2014, 26, 1818-1830.	6.6	131
47	The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC Plant Biology, 2013, 13, 157.	3.6	53
48	Hostâ€specific <scp>N</scp> odâ€factors associated with <i><scp>M</scp>edicago truncatula</i> nodule infection differentially induce calcium influx and calcium spiking in root hairs. New Phytologist, 2013, 200, 656-662.	7. 3	42
49	Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11, 252-263.	28.6	1,373
50	<i>RAM1</i> and <i>RAM2</i> function and expression during Arbuscular Mycorrhizal Symbiosis and <i>Aphanomyces euteiches</i> colonization. Plant Signaling and Behavior, 2013, 8, e26049.	2.4	76
51	Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of <i>Medicago truncatula</i> À Â Â. Plant Physiology, 2013, 162, 107-115.	4.8	92
52	Phosphorylation of S344 in the calmodulinâ€binding domain negatively affects <scp>CCaMK</scp> function during bacterial and fungal symbioses. Plant Journal, 2013, 76, 287-296.	5.7	26
53	Nuclear Calcium Signaling in Plants. Plant Physiology, 2013, 163, 496-503.	4.8	70
54	The role of DMI1 in establishing Ca ²⁺ oscillations in legume symbioses. Plant Signaling and Behavior, 2013, 8, e22894.	2.4	20

#	Article	lF	Citations
55	Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling Â. Plant Physiology, 2012, 161, 556-567.	4.8	51
56	Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations Â. Plant Physiology, 2012, 160, 2300-2310.	4.8	39
57	A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology, 2012, 22, 2242-2246.	3.9	291
58	A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 2012, 22, 2236-2241.	3.9	262
59	The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. Signaling and Communication in Plants, 2012, , 1-30.	0.7	7
60	<i>Medicago truncatula</i> ERN Transcription Factors: Regulatory Interplay with NSP1/NSP2 GRAS Factors and Expression Dynamics throughout Rhizobial Infection Â. Plant Physiology, 2012, 160, 2155-2172.	4.8	127
61	Calcium Ion Binding Properties of <i>Medicago truncatula</i> Calcium/Calmodulin-Dependent Protein Kinase. Biochemistry, 2012, 51, 6895-6907.	2.5	19
62	Legume pectate lyase required for root infection by rhizobia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 633-638.	7.1	225
63	The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics, 2011, 45, 119-144.	7.6	1,008
64	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	27.8	1,166
65	<i>Lotus japonicus symRkâ€14</i> uncouples the cortical and epidermal symbiotic program. Plant Journal, 2011, 67, 929-940.	5.7	71
66	One hundred important questions facing plant science research. New Phytologist, 2011, 192, 6-12.	7.3	82
67	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	5.7	211
68	The broad spectrum of plant associations with other organisms. Current Opinion in Plant Biology, 2011, 14, 347-350.	7.1	10
69	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	2.6	147
70	Automated Bayesian model development for frequency detection in biological time series. BMC Systems Biology, 2011, 5, 97.	3.0	14
71	The <i>ROOT DETERMINED NODULATION1</i> Gene Regulates Nodule Number in Roots of <i>Medicago truncatula</i> and Defines a Highly Conserved, Uncharacterized Plant Gene Family Â. Plant Physiology, 2011, 157, 328-340.	4.8	89
72	Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14348-14353.	7.1	191

#	Article	IF	Citations
73	Conservation in Function of a SCAR/WAVE Component During Infection Thread and Root Hair Growth in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1553-1562.	2.6	69
74	How close are we to nitrogen-fixing cereals?. Current Opinion in Plant Biology, 2010, 13, 556-564.	7.1	134
75	<i>Sesbania rostrata</i> : a case study of natural variation in legume nodulation. New Phytologist, 2010, 186, 340-345.	7.3	60
76	Reprogramming Plant Cells for Endosymbiosis. Science, 2009, 324, 753-754.	12.6	160
77	Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of <i>Sesbania rostrata</i> Â Â. Plant Cell, 2009, 21, 1526-1540.	6.6	75
78	Positioning the nodule, the hormone dictum. Plant Signaling and Behavior, 2009, 4, 89-93.	2.4	92
79	GRAS-domain transcription factors that regulate plant development. Plant Signaling and Behavior, 2009, 4, 698-700.	2.4	198
80	LIN, a Novel Type of U-Box/WD40 Protein, Controls Early Infection by Rhizobia in Legumes Â. Plant Physiology, 2009, 151, 1239-1249.	4.8	84
81	GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in <i>Medicago truncatula</i> Â. Plant Cell, 2009, 21, 545-557.	6.6	342
82	Integrated Nod Factor Signaling in Plants. Signaling and Communication in Plants, 2009, , 71-90.	0.7	3
83	Rearrangement of Actin Cytoskeleton Mediates Invasion of <i>Lotus japonicus </i> Roots by <i>Mesorhizobium loti </i> ÂÂ. Plant Cell, 2009, 21, 267-284.	6.6	149
84	Deletion-Based Reverse Genetics in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2009, 151, 1077-1086.	4.8	97
85	Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?. PLoS ONE, 2009, 4, e6637.	2.5	18
86	Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology, 2008, 59, 519-546.	18.7	942
87	How CYCLOPS keeps an eye on plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20053-20054.	7.1	12
88	EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2696-2713.	6.6	172
89	Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2681-2695.	6.6	189
90	Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9823-9828.	7.1	262

#	Article	IF	Citations
91	Mastoparan Activates Calcium Spiking Analogous to Nod Factor-Induced Responses in Medicago truncatula Root Hair Cells. Plant Physiology, 2007, 144, 695-702.	4.8	46
92	The <i>Medicago truncatula</i> DMI1 Protein Modulates Cytosolic Calcium Signaling. Plant Physiology, 2007, 145, 192-203.	4.8	99
93	An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction. Plant Cell, 2007, 19, 1221-1234.	6.6	298
94	PLANT SCIENCE: Nodules and Hormones. Science, 2007, 315, 52-53.	12.6	71
95	Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase. Plant Physiology, 2007, 144, 324-335.	4.8	404
96	Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant Journal, 2006, 46, 961-970.	5.7	204
97	Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant Journal, 2006, 48, 883-894.	5.7	150
98	Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 2006, 441, 1149-1152.	27.8	350
99	Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology, 2006, 9, 351-357.	7.1	228
100	The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell, 2006, 18, 2792-2806.	6.6	239
101	Analysis of Nod-Factor-Induced Calcium Signaling in Root Hairs of Symbiotically Defective Mutants of Lotus japonicus. Molecular Plant-Microbe Interactions, 2006, 19, 914-923.	2.6	164
102	Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14959-14964.	7.1	286
103	Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biology, 2005, 5, 15.	3.6	86
104	Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators. Science, 2005, 308, 1786-1789.	12.6	525
105	Peace Talks and Trade Deals. Keys to Long-Term Harmony in Legume-Microbe Symbioses: Figure 1 Plant Physiology, 2005, 137, 1205-1210.	4.8	99
106	From The Cover: A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4701-4705.	7.1	433
107	Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology, 2004, 5, 566-576.	37.0	312
108	Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes. Science, 2004, 303, 1364-1367.	12.6	493

#	Article	IF	Citations
109	The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant Journal, 2003, 34, 495-506.	5 . 7	350
110	Identification and Characterization of Nodulation-Signaling Pathway 2, a Gene of Medicago truncatula Involved in Nod Factor Signaling. Plant Physiology, 2003, 131, 1027-1032.	4.8	190
111	Dissecting Symbiosis: Developments in Nod Factor Signal Transduction. Annals of Botany, 2001, 87, 709-718.	2.9	67
112	Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant Journal, 2001, 28, 191-199.	5.7	82
113	Ethylene Inhibits the Nod Factor Signal Transduction Pathway of <i>Medicago truncatula</i> Cell, 2001, 13, 1835-1849.	6.6	268
114	Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13407-13412.	7.1	265
115	Plants expressing thePtodisease resistance gene confer resistance to recombinant PVX containing the avirulence geneAvrPto. Plant Journal, 1999, 17, 41-50.	5.7	52
116	Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10300-10305.	7.1	186
117	Tomato Prf Is a Member of the Leucine-Rich Repeat Class of Plant Disease Resistance Genes and Lies Embedded within the Pto Kinase Gene Cluster. Cell, 1996, 86, 123-133.	28.9	553
118	Intergeneric Transfer and Functional Expression of the Tomato Disease Resistance Gene Pto. Plant Cell, 1995, 7, 1537.	6.6	3
119	Genetic dissection of bacterial speck disease resistance in tomato. Euphytica, 1994, 79, 195-200.	1.2	8
120	Fast Neutron Mutagenesis for Functional Genomics. , 0, , 291-305.		2
121	Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. SSRN Electronic Journal, 0, , .	0.4	0