
Xiwen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906718/publications.pdf Version: 2024-02-01

XINNEN ZHANC

#	Article	IF	CITATIONS
1	Oneâ€Pot Synthesis of Agâ€TiO ₂ â€rGO Nanocomposites for Visibleâ€Light Photodegradation. ChemistrySelect, 2022, 7, .	1.5	2
2	Novel Synthesis of Ag NPs on Polymer Fabrics by a Green Method for Antibacterial Performance. Fibers and Polymers, 2021, 22, 2464-2474.	2.1	6
3	Electrospun PVDF Nanofibers Decorated with Graphene and Titania for Improved Visible Light Photocatalytic Methanation of CO2. Plasmonics, 2020, 15, 717-725.	3.4	4
4	The green synthesis of Ag-loaded photocatalyst via DBD cold plasma assisted deposition of Ag nanoparticles on N-doped TiO2 nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111971.	3.9	24
5	A two-step preparation method for nanocrystalline Ag-decorated cotton fabrics and their antibacterial assessment. Journal of Materials Science, 2019, 54, 10447-10456.	3.7	11
6	Dual Dielectric Barrier Discharge Plasma Treatments for Synthesis of Ag–TiO ₂ Functionalized Polypropylene Fabrics. Industrial & Engineering Chemistry Research, 2019, 58, 7734-7741.	3.7	20
7	Plasmon enhanced photocatalytic and antimicrobial activities of Ag-TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Materials Science and Engineering C, 2019, 96, 197-204.	7.3	75
8	Plasma enhanced decoration of nc-TiO2 on electrospun PVDF fibers for photocatalytic application. Materials Research Bulletin, 2019, 111, 102-112.	5.2	20
9	TiO ₂ surfaces self-doped with Ag nanoparticles exhibit efficient CO ₂ photoreduction under visible light. RSC Advances, 2018, 8, 15991-15998.	3.6	19
10	A green synthetic approach for self-doped TiO ₂ with exposed highly reactive facets showing efficient CO ₂ photoreduction under simulated solar light. Green Chemistry, 2018, 20, 2084-2090.	9.0	20
11	Strengthening of archaeological wood using electroosmosis. European Journal of Wood and Wood Products, 2018, 76, 965-971.	2.9	2
12	In-situ and phase controllable synthesis of nanocrystalline TiO 2 on flexible cellulose fabrics via a simple hydrothermal method. Materials Research Bulletin, 2018, 97, 89-95.	5.2	34
13	TiO2 hybrid material film with high CO2 adsorption for CO2 photoreduction. Journal of Alloys and Compounds, 2017, 729, 884-889.	5.5	11
14	Effect of Electric Field on CO2 Photoreduction by TiO2 Film. Journal of Electronic Materials, 2017, 46, 999-1004.	2.2	2
15	Green synthesis of plasmonic Ag nanoparticles anchored TiO 2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO 2. Journal of CO2 Utilization, 2017, 20, 200-207.	6.8	56
16	Direct Electrodeposition of Hollowed Ag Nanostructures on ITO Glass for Reproducible SERS Application. Plasmonics, 2016, 11, 1279-1283.	3.4	2
17	Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Applied Surface Science, 2015, 355, 45-51.	6.1	59
18	Enhanced CO2 photoreduction under electrostatic field induction. Solar Energy Materials and Solar Cells, 2015, 143, 275-279.	6.2	2

XIWEN ZHANG

#	Article	IF	CITATIONS
19	Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4. Chemical Physics Letters, 2015, 639, 11-16.	2.6	25
20	Fabrication of titanium dioxide with durable superhydrophilicity by anodization. RSC Advances, 2015, 5, 97702-97709.	3.6	5
21	Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Applied Surface Science, 2013, 277, 105-110.	6.1	95
22	Ag-silica composite nanotube with controlled wall structures for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 111, 693-698.	5.0	8
23	The influence of electrochemical terms on TiO <inf>2</inf> nanorod morphology and photoreduction ability. , 2013, , .		0
24	Growth of crystallized titania from the cores of amorphous tetrabutyl titanate@PVDF nanowires. Journal of Materials Chemistry, 2012, 22, 18603.	6.7	15
25	Surface plasmon enhanced blue–green photoluminescence from carbon-rich amorphous silicon carbide films. Journal of Alloys and Compounds, 2012, 513, 18-22.	5.5	10
26	Amorphous carbon-based films with surface-plasmon-enhanced full-color photoluminescence. Journal of Non-Crystalline Solids, 2012, 358, 1725-1729.	3.1	1
27	Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chemical Physics Letters, 2012, 531, 149-154.	2.6	88
28	Double-potentiostatic electrodeposition of Ag nanoflowers on ITO glass for reproducible surface-enhanced (resonance) Raman scattering application. Electrochimica Acta, 2012, 67, 12-17.	5.2	22
29	Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement. Optics Express, 2011, 19, 17935.	3.4	8
30	Electrical and optical properties of boronâ€doped nanocrystalline silicon films deposited by PECVD. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 144-148.	1.8	13
31	Selective-area growth of periodic iron-garnet thin films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 375-378.	1.8	0
32	Blue–green luminescence and SERS study of carbonâ€rich hydrogenated amorphous silicon carbide films with multiphase structure. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2543-2548.	1.8	12
33	Preparation and photoconductive properties of vacuum-sublimed CuPc/ZnS multilayer films. Physica Status Solidi A, 2003, 195, 359-366.	1.7	0