Xinghua Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4906263/publications.pdf

Version: 2024-02-01

759233 713466 22 733 12 21 h-index citations g-index papers 22 22 22 1268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chinese Chemical Letters, 2022, 33, 2697-2700.	9.0	9
2	2H–MoS2/Co3O4 nanohybrid with type I nitroreductase-mimicking activity for the electrochemical assays of nitroaromatic compounds. Analytica Chimica Acta, 2022, 1221, 340078.	5.4	10
3	3D printing of heterogeneous microfibers with multiâ€hollow structure via microfluidic spinning. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 913-922.	2.7	4
4	Design and Application of Metal Organic Framework ZIF-90-ZnO-MoS ₂ Nanohybrid for an Integrated Electrochemical Liquid Biopsy. Nano Letters, 2022, 22, 6833-6840.	9.1	8
5	Investigating the Regulation of Neural Differentiation and Injury in PC12 Cells Using Microstructure Topographic Cues. Biosensors, 2021, 11, 399.	4.7	2
6	PLGA Nanofiber/PDMS Microporous Composite Membrane-Sandwiched Microchip for Drug Testing. Micromachines, 2020, 11, 1054.	2.9	11
7	Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Coâ€Culture via Microfluidic Spinning. Macromolecular Bioscience, 2020, 20, 1900395.	4.1	24
8	Biomimetic human lung-on-a-chip for modeling disease investigation. Biomicrofluidics, 2019, 13, 031501.	2.4	38
9	Detection of Phenylketonuria Markers Using a ZIF-67 Encapsulated PtPd Alloy Nanoparticle (PtPd@ZIF-67)-Based Disposable Electrochemical Microsensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20734-20742.	8.0	43
10	Probing tumor microtissue formation and epithelial-mesenchymal transition on a well-mesh microchip. Biomicrofluidics, 2019, 13, 014102.	2.4	7
11	Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab on A Chip, 2018, 18, 486-495.	6.0	181
12	3D Microstructure Inhibits Mesenchymal Stem Cells Homing to the Site of Liver Cancer Cells on a Microchip. Genes, 2017, 8, 218.	2.4	9
13	Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes, 2017, 8, 244.	2.4	75
14	Organ-on-Chip Technology: Current State and Future Developments. Genes, 2017, 8, 266.	2.4	26
15	Regulating cell behaviors on micropillar topographies affected by interfacial energy. RSC Advances, 2015, 5, 22916-22922.	3. 6	7
16	Functionalized PDMS with Versatile and Scalable Surface Roughness Gradients for Cell Culture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17181-17187.	8.0	24
17	Microfluidic platform towards point-of-care diagnostics in infectious diseases. Journal of Chromatography A, 2015, 1377, 13-26.	3.7	176
18	Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress. Biomicrofluidics, 2014, 8, .	2.4	22

XINGHUA GAO

#	Article	IF	CITATION
19	High throughput generation and trapping of individual agarose microgel using microfluidic approach. Microfluidics and Nanofluidics, 2013, 15, 467-474.	2.2	15
20	An integrated microfluidic device for characterizing chondrocyte metabolism in response to distinct levels of fluid flow stimulus. Microfluidics and Nanofluidics, 2013, 15, 763-773.	2.2	10
21	A simple elastic membraneâ€based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis, 2011, 32, 3431-3436.	2.4	18
22	Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis, 2009, 30, 2481-2487.	2.4	14